

STS11010

Examensarbete 30 hp
Februari 2011

Achieving Lean Software Development

Implementation of Agile and Lean Practices

in a Manufacturing-Oriented Organization

Thomas Norrmalm

Teknisk- naturvetenskaplig fakultet
UTH-enheten

Besöksadress:
Ångströmlaboratoriet
Lägerhyddsvägen 1
Hus 4, Plan 0

Postadress:
Box 536
751 21 Uppsala

Telefon:
018 – 471 30 03

Telefax:
018 – 471 30 00

Hemsida:
http://www.teknat.uu.se/student

Abstract

Achieving Lean Software Development:
Implementation of Agile and Lean Practices in a
Manufacturing-Oriented Organization
Thomas Norrmalm

The study reveals improvement areas in terms of lead time and quality in a traditional
software development process of a large manufacturing-oriented organization, and
identifies four obstacles to the application of a Lean software development framework
in order to achieve such improvements. The data from interviews are matched to
four predefined categories. These categories are evaluated using value stream
mapping and a framework of seven common improvement areas in software
development. A large project and task tracking system indicate that lead time is a real
problem in the process. The most significant improvement area is wait time for
change approval meetings. A second prominent improvement area is the large amount
of approval handshakes. At least a few of these handshakes are always approved, thus
adding unnecessary lead time to the process.

The four most imminent obstacles in adopting lean software development are
identified through estimating the efficiency of two in-house derivations of Scrum and
Kanban. The first obstacle is deep vertical but narrow horizontal expertise among
developers. With some systems, there’s only one developer who knows how to
maintain the product. This makes it impossible to work as a team which is an
imperative principle of lean. A second obstacle is how the teams are arranged
organizationally. They have a functional setup over three departments and three
managers, which to some extent create a silo mentality, rendering cooperation
difficult. A third obstacle is how the teams are arranged geographically. Split over two
locations, manufacturing and headquarters, they have different customers, objectives
and a plain unfamiliarity with another that has reduced the will and opportunity to
communicate and coordinate. A fourth obstacle is the inherent conflict between the
prescriptive activities of ITIL, optimized for IT operational services, and the
adaptability of agile methodologies, optimized for rapid change and empirical
decisions. ITIL fulfills a sometimes uncalled for need to get all changes approved
through several layers of management.

The study concludes that Lean software development is in conflict with many
traditional values of a manufacturing organization. Although lean may be prevalent in
other parts of the organization, this does not necessarily include the IT function. IT
still seems to have hard time grasping the lean concepts of flow, waste and value.

ISSN: 1650-8319, STS11010
Examinator: Elisabet Andrésdóttir
Ämnesgranskare: Roland Bol
Handledare: Tommy Hurtig

Sammanfattning
Studien visar på förbättringspotential inom ledtid och kvalitet i en traditionell
mjukvaruutvecklingsprocess hos en stor tillverkningsorganisation. Studien identifierar
också fyra hinder för att applicera ett Lean software development-ramverk i syfte att
åstadkomma sådana förbättringar. Data från intervjuer matchas mot fyra kategorier.
Kategorierna är utvärderade med hjälp av värdeflödeskartor och ett ramverk med sju
vanliga förbättringsområden i mjukvaruutveckling. Ett omfattande
projekthanteringsverktyg indikerar att långa ledtider är ett reellt problem i processen.
Det tydligaste förbättringsområdet är väntetid inför möten där förändringar ska
godkännas. Ett andra tydligt förbättringsområde är det stora antalet
godkännandeförfrågningar vid olika faser i processen. Åtminstone några av
förfrågningarna godkänns alltid och förlänger således processens ledtid i onödan.

De fyra mest omedelbara hindren för en anpassning till Lean software development
presenteras genom att bedöma effektiviteten i två egenutvecklade metoder baserade på
Scrum och Kanban. Första hindret är en hos utvecklarna djup vertikal men smal
horisontell expertis. I vissa system är det blott en utvecklare som har kunskapen att
hantera systemet. Detta gör det omöjligt att arbeta i grupp, vilket är tvingande del av
lean. Ett andra hinder är hur grupperna är arrangerade organisatoriskt. De har en
funktionell uppdelning över tre avdelningar och tre chefer, vilket till viss del skapar ett
silotänkande och gör samarbete svårare. Ett tredje hinder är hur grupperna fördelas
geografiskt. Eftersom de är spridda över två platser, huvudkontoret och fabriken, och
därmed har olika kunder och målsättningar, och dessutom en allmänt låg förtrogenhet
med varandra, så är incitamentet för kommunikation och koordinering ännu lägre. Ett
fjärde hinder är den inneboende konflikten mellan reglerade aktiviteter i ITIL, som är
anpassade för IT-drift, och dynamiken i agil utveckling, som är optimerad för
förändring och korta beslutsvägar. ITIL skapar ibland ett onödigt behov av att
auktorisera förändringar genom flera nivåer av beslutsfattande.

Studiens slutsats är att Lean software development är i konflikt med många traditionella
värderingar som man hittar i en tillverkningsorganisation. Trots att lean existerar i vissa
delar av organisationen så behöver inte detta betyda att IT-organisationen tagit till sig av
dess filosofi. Det tycks fortfarande vara svårt för IT att anamma lean-koncept som flow,
waste och value.

Acknowledgements

The paper you are holding in your hand was written during a 20 week period at the ITT
Water & Wastewater headquarters in Stockholm. A lot of people helped me before,
during, and after the study was conducted, too many to mention them all. I would,
however, like to thank a few people who had a particularly important role in making the
study possible.

First I would like to thank Tommy Hurtig, my supervisor at Water & Wastewater, for
giving me the opportunity to do this study, and supplying me with every resource I
could possibly need. Secondly I would like to thank my reviewer, Roland Bol, for
providing guidance and valuable help with how to approach the scientific area of lean
and agile. As a third and final thank you I would like to mention Britta Schreiber,
teamleader at Water & Wastewater, who was an invaluable source in describing the
ways of work at the company.

Thank you!

Stockholm, January 2011

Thomas Norrmalm

Table of Contents

1. Introduction __ 1
1.1 Purpose__ 3
1.2 Aim ___ 3
1.3 Methodology __ 3

1.3.1 Lean and Agile Principles _______________________________________ 4
1.3.2 Timeline and Course of Action ____________________________________ 5

1.4 Disposition ___ 7

2. Theoretical Framework ___ 8
2.1 Aspects of a Software Development Process (SDP) _________________________ 8

2.1.1 Process Complexity __ 9
2.1.2 Prescriptive and Adaptive Methodologies __________________________ 10
2.1.3 The Traditional Waterfall Approach _______________________________ 11
2.1.4 The Light-Weight Agile Initiative _________________________________ 12

2.2 Agile Software Development Methodologies ______________________________ 13
2.2.1 Scrum ___ 14
2.2.2 Kanban __ 15

2.3 Applying Lean to Agile Software Development _____________________________ 16
2.3.1 Lean Philosophy ___ 17
2.3.2 Lean Software Development ____________________________________ 18
2.3.3 The Seven Wastes ___ 19

3. Software Development at W&WW ___ 24
3.1 Overview __ 24
3.2 IT function of W&WW __ 25
3.3 Teams Involved in the SDP ___ 25

3.3.1 Emmaboda Developer Team ____________________________________ 27
3.3.2 Sundbyberg Developer Team ___________________________________ 27
3.3.3 Integration Team ___ 28
3.3.4 Database Administrator Team ___________________________________ 29
3.3.5 Web Team __ 30
3.3.6 Communication and Coordination ________________________________ 30

3.4 Frameworks ___ 31
3.4.1 ITIL __ 31
3.4.2 PULS2 Project Management Template ____________________________ 32

3.5 The Software Development Process ____________________________________ 33
3.5.1 Customer Initiating an RFC _____________________________________ 34
3.5.2 Registration and Classification___________________________________ 36
3.5.3 Monitoring and Planning _______________________________________ 36
3.5.4 Change Advisory Board Meeting (CAB1) __________________________ 36
3.5.5 Building and Test ___ 37
3.5.6 Change Advisory Board 2 (CAB2) and Implementation ________________ 38

4. Analysis __ 39
4.1 Value Stream Mapping and Process Efficiency ____________________________ 39

4.1.1 Bottlenecks ___ 40
4.1.2 Waste __ 40

4.2 The Current State of Agile __ 42
4.3 The Conflict between ITIL, Regulation and Agile ___________________________ 44

4.4 Suggestions For An Agile SDP ___ 45
4.4.1 Application portfolio and Single-point-of-failure ______________________ 45
4.4.2 Team Setup and Communication ________________________________ 45
4.4.3 A Cross-Functional Team ______________________________________ 46

4.5 Discussion: How to Keep Improving _____________________________________ 46

5. Results ___ 48
5.1 Further Studies ___ 48

References __ 49

Appendix I ___ I

Appendix II ___ II

Appendix III ___ III

Appendix IV ___ IV

Appendix V __ V

Glossary
Please use this list for quick reference.

COBOL Common Business-Oriented Language – a programming language seen in
corporate data centers and mainframes

Department An organizational term for entities directly under functions

Dot-net .NET Framework – a software framework developed by Microsoft for Windows
operating systems

Function An organizational term for the entities directly under W&WW value center

IDMS Integrated Database Management System – a database management system used
to administrate the mainframe

IT operations The group responsible for the day-to-day monitoring and management of IT
Services and IT Infrastructure

ITT ITT Corporation – Conglomerate acting in global markets including water and
fluids management, defense and security, and motion and flow control. Is the
parent company of W&WW

Methodology A framework used to structure, plan, and control the process of software
development

PULS2 Project management template used by all functions at W&WW except R&D

RFC Request For Change – A written, formal description of a wanted change in a
information system

SDP Software Development Process – structure imposed on the development of a
software product. Describes approaches to a variety of tasks or activities that take
place during the process

SOA Service-Oriented Architecture – a set of design principles used during the phases
of systems development and integration

Team A team comprises a group of people belonging to a department

UAT User-Acceptance Test – Process to obtain confirmation that a system meets
mutually agreed-upon requirements

W&WW Water & Wastewater – global provider of water handling and treatment solutions
for municipal and industrial customers in more than 140 countries

1

1. Introduction
Think about it. A cell phone, computer, laptop – perhaps even a tablet – you have one.
Are they at work, at home, by the TV, by the kitchen table or just everywhere? IT
appliances are becoming an inseparable part of our daily lives. Still, for most of us,
these appliances are just a “thing”, a black box that enables a certain action in a certain
context. To buy a train ticket, for example. We surf the web, enter a few text strings and
voilà, a ticket is generated on the screen. At least most of the time. When this black box
fails us, however – may it be due to loss of connection, a bug in the software, or
incompatibilities with the browser – we become distressed. But because we know that
life without IT systems is no longer possible, we calm down just as quick and restart the
system. Suddenly it works again. The software works again.

This paper, in essence, is about how software can be made better. How do you make
software better? You must improve the process of making it, of course. Over the years,
many “best ways” of creating software have emerged and disappeared. The latest one to
emerge is agile. Agile, in its general definition, is often described as

the ability to change the body's position efficiently, requiring the integration of
isolated movement skills using a combination of balance, coordination, speed,
reflexes, strength, endurance and stamina

Does it sound promising as a way of creating software? Hard to tell, depends on what
you compare it to. The traditional approach to software development is based on
manufacturing principles. Manufacturing is defined as the act of

creating or producing in a mechanical way, or the transformation of raw materials
into finished products

How can these approaches be even remotely related, and why in software development?
How do they perform, in comparison? That is the topic of this paper. One must,
however, put these methodologies in context of history to fully understand their
implications.

In 2008, the value of the global software industry was US$ 303.8 billion (Software:
Global Industry Guide 2009). In 2013 the global software market is predicted to value
US$ 457 billion, an increase of 50.5 percent. Although still growing, the software
industry is already considered the third-largest U.S. manufacturing business, after
automobiles and electronics. With such remarkable growth, and over 40 years1 of
software development in the making, you would expect a high degree of maturity in the
production of software. This, however, is not the case. Software development projects
are still closely tied to properties such as poor quality, past deadline, over budget,
buggy – or simply failure. Some say a third of the projects are failures, some even two-
thirds (Standish Chaos report 2003); in either case, the numbers are extraordinary.
Imagine car manufacturing where only two thirds of the cars coming out of the factory
are functional. How can this difference in success rate be explained?

1 I consider the NATO sponsored conferences on software engineering in 1968 and 1969 to be the official
start software development as it is known today.

2

A part of the explanation is found in the old manufacturing principles of Fordism and
Taylorism (i.e. the scientific method) that still dominate the development of industrial
products and software. Generic software development processes such as the Software
Engineering Institute’s Capability Maturity Model and ISO 9000/9001 were conceived
to standardize the software development process, exactly like they had standardized the
manufacturing of traditional products. Discipline and professionalism were described as
silver bullets. Unfortunately, the continuation of the software crisis into the 1980s
revealed that the quest for perfect software still was not over (Brooks 1986).

The next approach to show promise was the Japanese principles of quality. With the
addition of lean principles, the traditional manufacturing model of development was to
be perfected, or at least that was the plan (Mah 2008). Reality, however, proved
different. Rather than improving software development, today’s projects are still
performing as dire as they did in the 80s, with late deliveries and unfulfilled customer
requirements still as common as ever (Mah 2008). Most researchers argue that there is
no single approach that could resolve all complexities in software development (Brooks
1995).

In recent years, lean and agile principles have gained popularity in addressing problems
such as long development life cycles and rapidly changing customer requirements.
Poppendieck et al (2003, 2005 and 2009) has taken lean and agile thinking to propose a
new software development methodology, lean software development, which combine
core principles of delivering customer value, minimize waste and maximize flow.
Properly implemented, lean software development promises increased productivity and
reduced lead time (Bjørnvig et al 2010). The methodology proposes improvement
particularly for medium to large companies with a history of lean in manufacturing,
where the philosophies already imbue some parts of the organization (Poppendieck et al
2009). Although quantitative research on agile methodologies versus traditional
methodologies is rather scarce, Mah (2008) and Ambler (2007) indicate that some
impressive results may be achieved. Mah (2008) compares the performance of 23 agile
projects against an industry average of 7,500 completed software projects in the
Quantitative Software Management Associates database. He concludes that about 80
percent of the agile projects were completed quicker than similarly sized traditional
projects. In terms of quality, traditional manufacturing type projects reported a higher
defect rate when using large teams, sometimes as much as four times higher than the
agile average. Mature agile project teams showed a defect rate that remains proportional
to the project’s increase in size (Mah 2008).

ITT Water & Wastewater (W&WW) has a long tradition in manufacturing and
industrial applications. With 5800 employees, it is the world's largest supplier of pumps
and systems for the transportation, treatment and control of water (W&WW official site
2010). The company is a part of the ITT Corporation conglomerate, a globally
diversified manufacturing company with revenues of $11.7 billion in 2008. ITT
participates in several other global markets, including defense and security, and motion
and flow control (ITT official site 2010). W&WW consider software development
important in keeping the in-house software competitive. The IT department is
responsible for developing tools related to calculation, configuration, selection and
design of complicated watering solutions that ships to resellers on a global scale. The
software solutions aim to greatly simplify and automate work for sales, manufacturing
and engineers on-site. (Teamleader A, 2010)

3

The IT department, with a staff of approximately 150 employees, is based in
Sundbyberg and Emmaboda in Sweden; the majority of software development also
takes place in these two locations (Teamleader A, 2010). Today’s development process
is a traditional sequential waterfall process, based on processes from the manufacturing
side of the company. Development progress is made by sequentially entering the phases
of concept, initiation, analysis, design, construction, testing and maintenance. Lead
times, however, are becoming increasingly long, and there is a prominent problem of
projects being cancelled half-way through (Teamleader B, 2010). In recent years the
manufacturing part of the company has begun working towards lean principles of
management. This, however, has not been implemented in the software development
process. This paper aims to shed light on the downsides and benefits of implementing
lean software development practices in such a context.

1.1 Purpose
The purpose of this study is to contribute to the understanding of how lean and agile
principles can be combined to reduce lead time in the software development division of
a large manufacturing-oriented organization.

1.2 Aim
The aim of this study is to answer the following research questions:

 How is the software development at ITT W&WW organized?
 To what extent can a Lean software development framework improve the

software development process in terms of minimizing waste?
 What are the most imminent obstacles in implementing such a framework?

The analysis is focused on the earlier parts of the software development process, mainly
the change management process. The release and maintenance process will not be
covered in any detail. Focus is on developer teams rather than architectural teams. With
that said, knowledge had to be gained in how interaction between all stakeholders in the
process work, thus requiring a general idea of how the other teams work as well.

1.3 Methodology
To successfully produce software is a complex process. A complex process has a large
set of variables affecting its performance. What this thesis aim to do is to deliver a
starting point to improve on those variables; a qualitative evaluation how the
organization performs and what agile and lean principles can bring to reduce lead-time
and improve quality over time.

The way of measuring performance in this paper is based on the Software
Benchmarking Organization’s (2010) definition. The Software Benchmarking
Organization offers a set of best practice key performance indicators (KPIs) to measure
performance in software development projects. They define software development
performance as

the efficiency of the development process in terms of value-adding core activities,
support activities, prevention activities (reviews, inspections) and appraisal/rework
activities (testing, defect removal) (Benchmarking Organization, 2010)

4

W&WW has no implementation of KPIs, and thus no quantitative measure to estimate
the performance of the development organization (Teamleader B 2010). Therefore few
numbers are available that indicate the efficiency of the current SDP. The aim of my
findings is consequently to suggest a relative improvement over a previously unknown
state.

1.3.1 Lean and Agile Principles

Central to the thesis is lean and agile principles (see 2.3 for a more comprehensive
discussion on frameworks, concepts and definitions). By using the waste-value concept
and related tools an organization can continuously measure and improve its processes.
The main analysis tool of this thesis is the value map stream, which maps the value-
adding activities of the SDP, and the seven wastes of lean software development, a set of
waste activities that are commonly seen in development (Poppendieck et al 2003). The
lean value map is used to give an overall view of the process, and the seven wastes
serves as a guide to focus the effort of finding waste. It has been shown, as is also
discussed in the introduction, that agile approaches seldom decrease performance over a
traditional manufacturing-inspired approach. Therefore, by using light-weight agile
methodologies as a good practice comparison, arguments can be presented how waste
in the process can be reduced.

A number of sources contributed to my interpretation of agile and lean, and their
unification in the approach called lean software development. Mary and Tom
Poppendieck (2003, 2007 and 2010) are the founders of the lean software movement.
Their work merge lean manufacturing, lean IT and agile, and they present their insights
from both a managerial and developing viewpoint. Mixing them with the books by Beck
(2004), Bjørnvig et al (2010), Cohen (2010) and numerous Internet resources gave me
an in-depth understanding of how agile projects can add value in practically any
organization. It also provided, perhaps more importantly, scenarios where agile
performs less well.

The Internet is, as always when studying an IT related subject, a vivid resource of up-to-
date reports, literature and perceptions. Lean software development is no exception to
this rule. The research area is still very active with many blogs, reports, white papers
and formal and informal communities that discuss topics on a day-to-day basis. The
works of Mikael Lundgren (2010) and Henrik Kniberg and Mattias Skarin (2010) are
particularly valuable in my understanding of agile methodologies Kanban and Scrum in
both practice and theory.

Many of the front figures in the community do agile coaching for a living and as such,
they may have a tendency to favor the techniques they teach. These subjective opinions
were neutralized to the extent possible by cross-checking numbers, and always keeping
a critical standpoint in regard to unverifiable data. It is, however, very hard to find
anyone within software development who advocates the traditional waterfall approach.
The general standpoint is therefore that a properly implemented agile approach is more
efficient than the traditional approach under most circumstances.

The author’s objectivity towards W&WW can be questioned; I spent two months
working in one of the projects taking place in the IT department during 2010. I do
argue, however, that the company has a welcoming and open approach and that my
previous experiences as an employee not directly interfere with the purpose of this
thesis. On the contrary, I think the background I had when starting this thesis was very

5

valuable. The teams were somewhat familiar with me which, in terms of trust, gave me
a head start.

1.3.2 Timeline and Course of Action

The data of this study is collected through four methods: a literature review (see
discussion above), interviews and observation. The majority of data-collection took
place at the W&WW headquarters in Sundbyberg, Stockholm, over a time-span of
approximately 20 weeks. The thesis had a pre-established project plan, most of which
was kept in phase with (see table 1).

Table 1. Course of action, from initial stages to analysis. (Source: Author)

Purpose Activity Subject

1 Literature study. Overview of
the accumulated knowledge in
lean and agile

Reading of books, reports,
white papers and blogs

Myself

2 Overview of the ITT
conglomerate, down to the
teams on different branches of
the IT organization

Structure thoughts and
experiences from my
previous work at W&WW.
Write down realizations
and create categorization

Myself

3 Gain in-depth understanding of
what W&WW software
development aims to achieve.
Basic understanding of the
different teams and their
methodologies

Overview interview, semi-
structured interviews.
Adjust categorizations
after new realizations and
sort data accordingly

Teamleaders,
developers

4 Gain understanding of the
Sundbyberg developer team
and their way of work

Semi-structured
interviews, sort data in
categories

Sundbyberg
developers and
teamleaders

5 Gain understanding of the
Emmaboda developer team and
their way of work

Semi-structured
interviews, sort data in
categories

Emmaboda
developers and
teamleaders

6 Establish process efficiency
and find bottlenecks

Retrieve information from
processes category. Map
value stream and analysis

Continuous
meetings with one
teamleader

7 Analyze the organization in
relation to the seven wastes
framework

Retrieve information from
team and self-reflection
categories. Analysis of
results

Myself and
feedback from
teamleader

Although literature reviews (table 1, step 1) were the initial step, most data collected in
this paper emerged as an iterative cycle between theoretical conceptions and empirical
data. This means that during empirical data collection, I continuously reviewed my data
against the literature and revisited sources when in need of clarification.

6

During step 2, the subjects to interview were selected. The aim of my selection was to
capture the views and opinions of managers as well as developers. Once selection was
done, initial contact was taken through mail, direct communication or over the phone.
All of the interviews were semi-structured; I sketched a few topics that were relevant to
what I wanted to know about a specific activity in the software development process,
and the topics were given beforehand to the interviewee. Topics were structured in
accordance to the role of the subject (see Appendix V for detailed topics):

 Teamleaders were mainly asked about their team’s purpose and workflow, and
how they cooperated and coordinated with other teams

 Developers were asked how they experience their current work situation, and
how they worked practically with tools and computers

 Managers were asked how they staffed projects, and how priorities between
different tasks were done

The collected data were categorized by type: self-reflection, team, development process
and overall process. These categories were created to simplify the interview process,
and align data with the lean software development framework. The self-reflection
category included data on how the interviewees reflect on their own process and lean.
Team category included data on teams’ purpose, setup and external collaboration. The
development process category and overall process category included data on the
specific build and test process and the entire process, respectively. When referred to in
the paper, all interviewees are anonymous and gender neutralized. Source references are
made with the organizational role of the interviewee and a letter.

After the interviews were done, the next phase took place (see table 1, step 6). At this
stage my understanding of workflows and processes was sufficient. The next step was
to map the actual flow using the value map. This was done in cooperation with one of
the teamleaders. She helped me estimate activities, wait-time and work-time in the
entire SDP. As the last phase, step 7, continuous meetings were held with the team
leader of the Sundbyberg developer team in order to map, present and discuss the seven
wastes. The whole approach can be visualized as in figure 1.

Figure 1. Approach to analyzing the SDP. First a value map overview of the whole
process, then focus on particular bottlenecks and wastes in the flow. (Source: Author)

7

1.4 Disposition
The paper is divided into five chapters. The introduction chapter discusses software
development over time, and how agile and lean principles are growing in popularity,
promising improvement over traditional software development processes that often are
described as inherited from manufacturing. The methodology of the paper, including
value stream map and seven wastes, is presented.

Chapter two aims to discuss the software development process, i.e. investigate the kind
of problems encountered in this domain. Next are the concepts of process complexity
and prescriptive-adaptive methodologies, which are useful to understand the
comparison between the traditional waterfall approach and the agile initiative. Scrum
and Kanban, two agile methodologies, are presented in 2.2. In the last part of chapter
two, lean and agile principles are combined into the concept of lean software
development, and based on that framework the lean value map and seven wastes are
discussed.

Chapter three is a case study of software development and its context at W&WW. Part
one is an overview of the company, the business divisions and, lastly, the W&WW
value center. Next part is a look into the teams of the SDP, with focus on their
composition, methodology and internal communication. Next section gives insight into
the frameworks directly affecting the SDP, i.e. ITIL best practice and PULS2 project
management. Lastly, the whole SDP is presented, starting with customers initiating a
software change and ending with the user actually being affected by the new update or
system.

Chapter four is the analysis part, starting out with a value stream map analysis, where
bottlenecks are identified. With the value map in mind, the next section focuses on the
seven wastes of software development. The third part analyses the current agile
implementations and how they perform. Fourth is a section with proposed actions that,
based on lean assumptions, would improve the performance of the SDP.

Chapter five offers the conclusions of the thesis, including suggestions for further
studies.

8

2. Theoretical Framework
In order to effectively discuss lean and agile concepts, one must carefully define their
meaning and context of application. The purpose of the following chapter is – in
chronological order – first to explain the generic software development process and
some basic attributes of it, secondly to compare the traditional manufacturing-inspired
waterfall approach with the light-weight agile initiative, third is a study of agile
methodologies Scrum and Kanban. With the previous in mind, 2.3 merges lean core
principles and agile principles into lean software development. At this point, the reader
should have a basic understanding of lean, agile, Scrum and Kanban that is similar to
figure 2.

Figure 2. Relational diagram including lean, agile, Kanban and Scrum. Lean provides
the basic framework for agile principles, and Kanban and Scrum are methodologies
that apply the principles of lean software development on the SDP. (Source: Author)

2.1 Aspects of a Software Development Process (SDP)
This section is a brief overview of the different attributes of a software development
process (SDP), including terminology and definitions. A SDP is, in its most basic form,
a set of activities that span requirements, specification, architecture, design,
implementation, testing, deployment and maintenance (Bjørnvig 2010). It always starts
with some kind of idea. The idea can come from internal channels, i.e. from customers
within the organization, or external channels, i.e. from customers external to the
organization (Bjørnvig 2010). This thesis primarily focuses on SDPs with input from
internal channels, where customers and users are sales, marketing, R&D or other in-
house functions. It is important to note the distinction between customers and users. The
customer is defined as the person directly engaged in the development effort, i.e. the
one that pays for the work done. The user, on the other hand, is the person who uses the
system. Another stakeholder in the process is the developer. The role of a developer in
this paper follows the definition of Lundgren (2010). A developer is anyone who
contributes to the functionality and value of the final product. This includes – but is not

9

limited to – programmers, test specialists, database specialists, and UI designers. At the
end of a complete SDP, a product is delivered to the customer. The product can be an
entirely new application, or an update to an already existing application (Bjørnvig et al
2010). Software bugs are referred to as defects. As such, one quality indicator of a
product is the number of defects in the final product (Poppendieck 2003).

The way that the above mentioned activities, roles, and procedures are set up is referred
to as the methodology of the SDP. Not all parts of a methodology are formalized; there
are routines and procedures that are tacit knowledge (Beck 2004). Where a
methodology is not at all formalized, I will refer to it as an ad-hoc methodology,
meaning it is all based on direct, empirical decisions rather than on any particular
framework.

2.1.1 Process Complexity

Software development organizations must adapt its approach to the elements of the
system being built and the stakeholders building it. These elements are the technology,
the requirements, and the people involved in the creative process (Schwaber 2010). The
interactions between these elements are the basis of the complexity concept. Schwaber
(2010) argues that all development projects can be described using two dimensions:
simple to complicated and fully predictable to chaotic (see figure 3).

Figure 3. Systems are predictable, complex or chaotic. Regardless of which, they are
also simple or complicated to understand. Tic-tac-toe is simple, and human thinking is
chaotic. Software development is always complex, but can still be simple or complicated
as a system. (Source: Appelo 2008)

The definition of a simple system is that it’s easily understandable. It has a limited
number of components with a limited amount of interaction, and as such it can be fully
understood. A complicated, fully predictable system on the other hand, is not simple,
but still understandable – the number of components and interactions are larger but still
limited. Both simple and complicated problems can be predictable, complex or chaotic
(Appelo 2008). A complex system is not fully predictable, but still predictable to a
certain degree. A chaotic system is never predictable. (Schwaber 2010)

The difference between predictable and complex systems is the approach to
understanding them. Simple and complicated systems can be understood by analysis of

10

parts and interactions. Complex system can only be understood by studying how the
whole system operates, never by identifying all parts of it. Software projects, whether
simple or complicated, are always complex (Appelo 2008).

2.1.2 Prescriptive and Adaptive Methodologies

The methodology, as defined in 2.1, is essentially a framework which describes the
logical process of constructing a system. It has phases of defining, building and
implementation. When the complexity of the system’s problem domain is established,
an appropriate methodology can be chosen (Scrum methodology 2009). A system can
be theoretical or empirical. For a system to be classified as a theoretical system, it must
be derived from first principles, i.e. mathematical axioms. Only if it conforms to these
constructs can it be considered a theoretical process. Empirical modeling on the other
hand, relies on observed inputs and outputs without depending on any laws during the
construction process. It strictly depends on experimentally obtained information, i.e.
empirical evidence (Scrum methodology 2009). Theoretical modeling only involves the
estimation of the unknown parameters in a system. This means that fewer measurements
are necessary for the system to be modeled correctly. This type of mathematically valid
methodology is called formal. Outside of academy and research, it is not very common.
(Knight et al 1997)

A formal methodology usually has a higher prescription level then empirical
methodologies. The prescriptions are essentially constraints, or rules, that must be
followed when applying a methodology to a process. Fewer constraints imply a more
adaptive (empirical) methodology, and vice versa (see figure 4).

Figure 4. A comparison between methodologies on a prescriptive to adaptive scale.
Three constraints (as in Kanban) mean you are free to adapt the methodology as you
prefer – as long as you comply with the three constraints. Scrum has nine constraints,
meaning it is more prescriptive than Kanban, but still highly adaptive. The rational
unified process (RUP) methodology is included for comparison. RUP is a highly
prescriptive methodology with over 120 constraints in the process. (Source: Author,
based on Kniberg & Skarin 2010)

Generally, the more theoretical (and thus predictive) a system is, the more suitable is a
prescriptive (plan-driven) methodology. Adaptive methodologies focus on adapting
quickly to changing requirements. An adaptive team never goes into detail exactly what
tasks are being done next week, but only which features are planned for next month. As
a consequence of this, adaptive teams will have difficulty describing exactly what will
happen outside of a given time horizon. (Appelo 2008)

11

Prescriptive methodologies, in contrast, focus on planning the future in detail. A team
using a prescriptive methodology knows to a high degree what features and tasks are
planned for the entire length of the development process. Instead of being adaptive,
prescriptive teams have difficulty changing direction with changing requirements. The
project plan is optimized for the original target and changing direction can require
completed work to be started over, and thus cause much waste in the process.
Prescriptive teams will often institute a change control board to ensure that only the
most valuable changes are considered. (Boehm et al 2004)

Often the methodology of work is justified by the supposed ambition to maximize or
minimize revenue or similar business variables. Companies are seldom scientifically
motivated to choose development methodology. Fear of change and tradition – the way
we have always done it – are also common reasons why an organization works with a
specific methodology. (Knight et al 1997)

2.1.3 The Traditional Waterfall Approach

Most SDPs have historically used some derivation of the prescriptive waterfall
methodology, mainly because software development originated in the manufacturing
and construction industry of the 1960s. At that time, no formal development
methodology existed (simply because software development was unheard of), so the
solution was to apply the processes from the manufacturing side of the company on
software development. (McConnell 2004)

In a manufacturing plant, a workflow is laid out to turn raw material into a finished
product. When the workflow is established and preparations are done, managers are
hired. The managers bring in resources (preferably automated) to staff the various
points in the workflow. Then the job of the manager and her supervisors is then to
instruct the resources how to do a pre-defined task in the process. If the resources
handle their work correctly, the flow is constant and the products are manufactured as
planned. (Schwaber

In such environments, with highly defined processes, big design up front (BDUF) and
big requirements up front (BRUF) suits the business well when building or buying
machines. The business need is usually well-defined, with industrial machines only
having one or a few specified purposes. How the machines should perform is relatively
easy to calculate (McConnell 1996). BDUF and BRUF make sure that the design is
completed and perfected before the actual construction starts. As such, it helps prevent
expensive changes later on in the process. This is a successful approach with industrial
applications. McConnell (1996) estimates that a defect left undetected until construction
or maintenance would cost fifty to two-hundred times as much to fix

The concept of calling this manufacturing-inspired methodology a waterfall, with
BDUF being a large part of it, was coined in 1970 by Royce (1970). In the book, a
sequential process similar to a waterfall is presented (see figure 5).

12

Figure 5. The waterfall process is an irreversible sequence with isolated stages ranging
requirements, design, implementation, verification and maintenance. The model is
sometimes presented with feedback loops as well, i.e. verification has a channel back to
implementation in order to correct the errors found during testing. (Source: Royce
1970).

He describes the model as a flawed, non-working process. Before following the flow
down, the current phase has to be fully complete. An incomplete phase creates defects
in the final product. Given that it’s impossible to revert back to the previous phase, a lot
of work and resource planning then has to be done up front (Royce 1970). Because the
waterfall approach acts mostly as an example of a failed development process, questions
have been raised how much it is actually used in real-life projects. Weisert (2002)
argues that the waterfall approach is practically non-existent in modern software
development because it never existed (Weisert 2002). His arguments conclude that a
waterfall process, where it is impossible to go upstream or reverse, simply cannot exist
in real-world project management. Instead he argues that the most common use of the
waterfall process is to scare companies into using new methodologies that require
training and money (Weisert 2002). This critique may or may not be valid, but it is still
important to comprehend the waterfall process as made up of, at least to some degree,
isolated steps where BDUF and BRUF plays an important role. Although most
organizations not apply the exact waterfall methodology described here, many
development efforts still bear great resemblance to the step-by-step approach that it
prescribes (Mah 2008).

2.1.4 The Light-Weight Agile Initiative

The Agile initiative was started as a reaction to the traditional, manufacturing-inspired
way of creating software. It is, however, not a single methodology but rather a
collection of methodologies. Some parts of it draw from lean, and some from the very
earliest years of software engineering (Weinberg 2003). What is shared among the
methodologies is the focus on iterative and incremental development, where

13

“requirements and solutions progress through collaboration between self-organizing,
cross-functional teams” (Bjornvig et al. 2010). Agile methodologies are considered
light-weight and adaptive (in terms of prescribed activities) in comparison to traditional
methodologies, which often are characterized as over-prescriptive and over-managed
(Bjornvig et al. 2010). The term agile was coined during a gathering between seventeen
veteran software developers in 2001. Their manifesto, in its entirety, was written as

We are uncovering better ways of developing software by doing it and helping
others do it. Through this work we have come to value:

Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on the left
more (Agile Alliance official site 2010)

The manifesto serves as the core of the agile movement. Today the Agile Alliance – a
non-profit organization founded by developers from the agile gathering – promotes
software development according to the manifesto's principles (Agile Alliance official
site 2010).

Twelve Principles

One of the developers behind the agile initiative, Kent Beck (2001), translated the
manifesto into the twelve principles of agile, a set of principles which specifies the
concrete meaning behind the manifesto. The principles are (Manifesto for Agile
Software Development 2001):

 Early and continuous delivery of valuable software
 Welcome changing requirements, even late in development
 Deliver working software frequently, with preference to the shorter timescale
 Business people and developers must work together daily
 Build projects around motivated individuals. Give them the environment and

support they need, and trust them to get the job done
 The most effective method of communication is face-to-face conversation
 Working software is the primary measure of progress
 Sustainable development: developers, sponsors and users should be able to

maintain a constant pace
 Continuous attention to technical excellence and good design
 Simplicity – the art of maximizing the amount of work not done – is essential
 Great architecture, requirements and designs emerge from self-organizing teams
 Reflect on how to become more effective, then adjust behavior accordingly

2.2 Agile Software Development Methodologies
Agile includes a wide array of methodologies. Two of the most commonly used are
Scrum and Kanban, both said to honor the agile principles we saw in 2.1.4. They were,
however, devised earlier than the agile initiative itself. The following section discuss
and define some of their basic characteristics.

14

2.2.1 Scrum

Scrum is a time-boxed, iterative and incremental approach that aims to deliver on time
and with the customer demands in focus. Each iteration is time-boxed in, typically, a
two to four week long period (the length is derived by the team) where, at the end, the
team must always present a potentially shippable product increment. This period is
called a sprint (Cohen 2010).

A key principle in Scrum is how the customer requirements are handled. The basic
assumption is that customers will (and should want to) change their minds about what
they want and need during the length of development effort. Such unpredicted
challenges cannot be easily addressed in a traditional predictive or planned manner.
Instead, Scrum adopts an adaptive empirical approach, accepting that the problem
cannot be fully understood or defined, focusing instead on maximizing the team’s
ability to deliver quickly and respond to emerging requirements (Cohen 2010). As a
framework (see figure 6), it is constrained by a number of roles and activities. The roles
of the team are:

 The Scrum master, who maintains the processes (similar to the role of a
traditional project manager). The Scrum master is not leading the team (as
the team is self-organizing) but acts as a wall between the team and any
external disturbance

 The product owner, who represents the stakeholders and the business
 The team, a cross-functional group of about seven people. The team includes

all the developers who do the actual analysis, design, implementation and
testing

Figure 6. An overview of the Scrum methodology, including product backlog, sprint
backlog, sprint planning meeting, time-boxed sprint and final demonstration. (Source:
Author, modified from Cohen, 2010)

The set of features that go into a sprint is selected from the product backlog, which is a
prioritized set (based on business value) of requirements to be developed. The product
owner selects the tasks and presents them at the sprint planning meeting at the start of
each sprint. During this meeting, the product owner informs the team of the items in the
product backlog that she wants completed. The team then estimates how much of this
they can commit to during the next sprint. (Schwaber 2004)

15

During a sprint, the requirements are frozen, i.e. no one is allowed to make any change
to the sprint backlog. Each morning a short standup meeting is held, where the team can
synchronize and planning is updated. In 15 minutes, the following questions should be
answered by all team members (Cohen 2010):

 What have you done since yesterday?
 What are you planning to do now?
 What obstacles stops you from moving on?

If the proposed feature is not complete at the end of the sprint, it must be cycled back to
the product backlog (Lundgren 2010). After a sprint is completed, the team
demonstrates how to use the software. Time is put aside for a retrospective, where the
team reflects on the work that has been done during the last sprint. These reflections are
then used to adapt and improve the work flow until the next sprint (Dubakov et al
2008).

Scrum can be implemented using a wide range of tools. Many companies use software
tools, such as Microsoft Excel, to build and maintain the sprint backlog (Dubakov et al
2008). There are also other open-source and proprietary software packages dedicated to
management of products under the Scrum process. Other organizations implement
Scrum without the use of any software tools, and maintain their artifacts on paper,
whiteboards, and sticky notes. In aiding comprehension and teamwork, the whiteboard
is generally the preferred choice (Dubakov et al 2008).

2.2.2 Kanban

The Kanban board, with its origin in lean manufacturing, has seen a recent popularity
growth in software development. The name itself literally means signboard or billboard
(Kniberg et al 2010), and that describes its main purpose rather well. In software
development, and particularly agile software development, the visualization of projects
on boards is a practice to structure task handling. In Scrum tasks are placed on boards
for time-boxed sprints. Kanban is a different way to approach this. Instead of being
time-boxed, tasks are pulled at any time, only limited by a work-in-progress (WIP) limit
that restricts the allowed number of tasks in every workflow state (see figure 7).

Figure 7. A Kanban board, with workflow states "Backlog", "In Progress" and “Done”.
Numbers under each workflow state title illustrate the work-in-progress limit of that
state. The arrow indicate a flow from left to right, meaning that each task is moved ,
(Source: Kniberg & Skarin 2010).

16

The purpose of the pull-schedule is to maximize flow and reveal wait states.
Prescriptions in Kanban include only three activities (Kniberg et al 2010):

 Visualize the workflow, split the work into items, write each item on a card and
put on the board. Use named columns to illustrate where each item is in the
workflow

 Limit work-in-progress (WIP), assign explicit limits to how many items may be
in progress at each workflow state

 Measure the lead time (average time for the tasks to be completed), with the
purpose of optimizing the process. Lead time should be made as small and
predictable as possible

Because WIP is limited in a Kanban system, any item that becomes stuck in a workflow
state will quickly choke the system. If enough tasks become stuck the whole process
grinds to a halt. This usually has the effect of focusing the whole developer team on
solving the problematic task and restore flow. (Kniberg et al 2010)

Risks and Criticism

Schwaber (2010) argues that there is a substantial risk of Kanban being used when an
organization cannot (or dare not) adopt Scrum. Many of Scrum most difficult aspects –
such that may require organizational changes – are avoided. He claims that

…managers are still in charge of telling people what to do. People can be
interrupted at any time. People are still working in functional silos, preserving the
jobs of functional managers (Schwaber 2010)

Lundgren (2010) has noted a similar tendency in his work; Kanban boards often have
workflow states such as design, code, test and ship, thus implying a sequence of events
where functional teams will be doing different actions to the code as it flows through.
He remarks

Congratulations, you've just re-invented waterfall development in your own
organization, but under a new and catchy name (Lundgren 2010)

Lundgren (2010) brings up another risk with Kanban: variability in task size. A
consequence of software development is the fact that tasks will not be uniform in size,
and that they may change in size during their lifetime. Lundgren (2010) argue that for a
Kanban to work properly, all tasks need to be of a defined size and stay that way.
There’s no point in having a WIP limit of three tasks at a certain stage, if the first task
will take two hours and the other two three days each, Lundgren (2010) argues. Donald
Reinertsen argues that much waste in product development actually comes from trying
to minimize the variability of development tasks, instead of accepting and managing it.
Kanban used this way may put focus back on trying to remove variability (Reinertsen
2007).

2.3 Applying Lean to Agile Software Development
The previous sections go into detail on agile, Scrum and Kanban. In the following part,
lean is discussed. The application of lean on agile software development, popularly
called lean software development, is a useful concept; mainly because it offers the
opportunity to use lean concepts such as waste and value. Lean software development is
essentially a translation of lean manufacturing and lean IT principles to the software

17

development domain (Bjørnvig et al 2010). Many principles are shared among agile and
lean, and recent years has seen lean software development gain a solid reputation within
the agile community (Poppendieck et al 2009; Bjørnvig et al 2010). The purpose of the
following section is to setup a framework for understanding lean software development
and its synergies with agile, starting out with the core philosophy of lean manufacturing.

2.3.1 Lean Philosophy

Lean is a process management philosophy derived from the Toyota Production System
(TPS). TPS evolved from 1940 onward, under the direction of Taiichi Ohno. Ohno
observed a need for Toyota to improve the production system in order stay competitive
in the crowded Japanese market. His primary aim was to shorten the lead time between
order intake and cars rolling of the production line (Ohno 1988). To effectively discuss
and achieve constant improvement, he invented the term value. Value is defined as any
action or process that a customer would be willing to pay for. The customer, in this
definition, is anyone who consumes a product or service. In a sense, value is created
only as the customer gets the car coming of the production system. Poppendieck et al
(2003) argues that the same applies to software development, i.e. designs and prototypes
in a developing effort are not valuable until the customer enjoys the delivery of the new
product (Poppendieck et al 2003). The lean philosophy also includes waste. Waste is
anything that does not bring value into the process. If the activity is wasteful, it should
be eliminated as quickly as possible (Shingo 1988). When waste is eliminated, quality
improves and lead time, production time and cost are reduced. In his work with TPS,
Ohno identified seven areas of waste in manufacturing: overproduction, unnecessary
transportation, inventory, motion, defects, over-processing and waiting (Ohno 1988).

Recent years have seen a growth of lean being applied to IT. In traditional lean
manufacturing, the businesses produce goods of value to customers. In lean IT the IT
function manufactures business services of value to the parent organization and its
customers. The IT business services include, just like in manufacturing, resource
management, quality control and security issues. The event of inventory being stored in
the factory and the intermediate steps of an IT development process are not that
different (Waterhouse 2008). Others argue that software development is a creative
process rather than a well-defined production process, and as such, it should not be
limited by the boundaries of what actually brings value to the customer (Bjørnvig et al
2010; Poppendieck et al 2003). There is, however, as both Bjørnvig et al (2010) and
Poppendieck et al (2009) argue, no contradiction between having a creative process and
a working framework to handle change. On the contrary, lean supports individual
thinking to a strong degree, encouraging improvement by everyone involved in the
working process. See table 2 for an comparison how lean manufacturing principles and
agile principles differ.

18

Table 2. The contrast between lean manufacturing and agile software development in
terms of core philosophy. (Source: Bjørnvig et al 2010)

2.3.2 Lean Software Development

Now, with a basic understanding of both agile software development and lean
principles, the next section is focused on the combination of the two in lean software
development.

The most central aspect in lean software development is the concept of waste.
Poppendieck explains the concept simply as everything not adding value to the
customer, which is similar to Shingos (1989) original definition. Waste is, strictly
speaking, the exact opposite of value. In software development it includes, but is not
limited to, unnecessary code and functionality, delay in the software development
process, unclear requirements, bureaucracy and slow internal communication. In order
to identify and eliminate waste, one must be able to recognize and see it. If some
activity can be bypassed, or the result can be achieved without it, the activity is waste
(Poppendieck et al 2010).

This paper uses a tool called the value stream map to identify waste. The value stream
map is an analysis tool which reveals wait states in any process. By analyzing the
activities that take place in the chain from change request back to user, time spent
working adding value to a product and time spent not adding value to a product can be
mapped. When the map is complete, working time can be divided with wait time to
provide a process efficiency estimate in terms of time spent in value-adding activities
(Poppendieck et al 2003; 2010). As an addition, this workflow analysis can act as a base
for discussing the seven wastes of software development. The following section will
discuss them in greater detail.

Lean Manufacturing Agile Development

Thinking and doing Doing

Inspect-plan-do Do-inspect-plan

Feed-forward and feedback (design for
change and respond to change)

Feedback (react to change)

High throughput Low latency

Planning and responding Reacting

Focus on process Focus on people

Teams (working as a unit) Individuals (and interactions)

Complicated systems Complex systems

Embrace standards Inspect and adapt

Rework in design adds value, in making is
waste

Minimize up-front work of any kind and
rework code to get quality

Bring decisions forward (Decision
Structure Matrices)

Defer decisions (to the last possible
moment)

19

2.3.3 The Seven Wastes

The seven wastes of software development (see table 2) is translated to the software
development domain by Poppendieck et al (2003). This classification serves as a guide
into the common wastes of software development processes. This section discuss and
present Poppendieck et al (2003) classification, with supplementary observations by
others researchers.

Table 2. The seven wastes as described originally in the TPS, and the translation into
the software development domain. (Source: Poppendieck et al 2003)

Lean Manufacturing Lean Software Development

Inventory Partially Done Work

Extra Processing Extra Processes

Overproduction Extra Features

Transportation Task Switching

Waiting Waiting

Motion Motion

Defects Defects

Partially Done Work

Having software products partially done is risky (Poppendieck 2003). The longer the
project remains unfinished, the larger the risk is of the product becoming obsolete.
Poppendieck et al (2003) argue that a product needs to be put online in a production
environment as quickly as possible for the proposed value to exist. It is impossible to
know for sure what problems may arise with integration, or if the business problem the
application aimed to solve really is solved. To have a project latent for a long time and
then take it down is extremely wasteful. Partially done work also tie up resources
(Poppendieck et al 2003).

Lundgren (2010) argues that defining done is essential in any development effort. Not
only must done be defined on a functional basis, but also at an all compassing level,
making sure that the product has quality built-in to it before being released to
production. Lundgren points to several unprecedented cost and waste scenarios that may
become real when done has an unclear or varying meaning among teams in the
development organization:

 Products may not be sufficiently quality controlled, e.g. testing is partly skipped
 Solutions may not be cleared with the customer
 Documentation may be skipped

The definition should require a number of criteria to be fulfilled. For a development
effort, done may be defined as: coded (implemented), delivered (checked-in, installed,
etc.), accepted (by the product owner), declared (as in documentation) and tested. With
a clearly defined done, the organization can quickly move tasks to the next workflow
state or pull new work into the process. Finding useful done criteria is an iterative cycle
that may take time. Kniberg et al (2010) simplifies the process somewhat by also setting
definitions of done on each workflow state on a Kanban board (see figure 8).

20

Figure 8. A Kanban board with three workflow states, including a definition of done
criteria set. Task A and B, as an example, has fulfilled the done critera of the workflow
state and is moved into the next. (Source: Author, modified from Kniberg & Skarin,
2010)

Extra Processes

Extra processes, as in papers that no one read, are waste. Poppendieck et al (2003)
argues that paperwork

 Consume resources
 Hide quality problems
 Slows down response time
 Degrades and become obsolete
 Is lost

The software development team must always take into consideration the kind of
paperwork needed. Common sources of waste are change approvals, customer sign-offs,
and traceability paperwork. A useful test, according to Poppendieck et al (2003), is to
simply see if anyone asks for the documentation being written. The creation of use
cases, templates and tables that other members in the team are eager to use usually
means that the papers are adding value. Poppendieck (2003) states three rules that, they
argue, are useful to keep in mind if you need to produce paperwork:

 Keep it short
 Keep it high level, i.e. do not go into unnecessary detail
 Do it offline, i.e. on whiteboards or paper notes

Extra Features

Poppendieck et al (2003) describes extra features as unnecessary. The addition of code
“just for the sake of it or because it’s fun” (Poppendieck et al 2003) is pure waste. They
argue that extra features, even the smallest edits in code, will force tracking, compiling,
integration and testing to re-run again and potentially cause future problems. The
Standish Group reports that an average of 64 percent of all functionality in software
applications is never or rarely used (see figure 9).

21

Figure 9. Chart showing the usage of functionality in an average application. 64
percent is never or rarely used, and only approximately 20 percent is used often or
always. (Source: Standish Group 2002)

The low degree of functionality usage was particularly apparent in application where
big designs up front were completed before business return-of-investment was
considered or even conceivable. (Standish Group 2002)

Task Switching

Task switching is a common source of waste, according to Poppendieck et al (2003). In
a task switching scenario, the following holds: It will take longer before value can
delivered to the customer, and due to the attributes of context switching and flow, the
same tasks will take approximately 20 percent more time to complete (see figure 10).

Figure 10. An comparison between task handling scenario 1 (sequential) and 2 (task
switching). Task A delivers to customer A, task B to customer B and task C to customer
C. In scenario 1, value is realized after every week. In scenario 2, only part of the
needed work on each task A, B and C is done every week. As such, it takes three weeks
for any task to deliver value. Moreover, because the developer has to change context
frequently, approximately 20 percent more time has to be added, thus stretching the
work into week 4. (Source: Author, modified from Matt Stine, 2010)

DeMarco et al (1999) describes the effects of context switching in software
development. They use the term flow to denote a state where the developer becomes
extremely productive. To frequently be able to reach this state, DeMarco et al (1999)
and Shore (2004) points to several important prerequisites:

 If you must work on multiple projects, work on one at a time. Minimize context
switches to maximize productivity

22

 If your team is required to handle interruptions (such as support events),
consider rotating the responsibility for handling them. Make sure that each
person has the knowledge necessary to handle the interruptions; otherwise the
system will quickly break down

 Eliminate unimportant work and interruptions. If it isn't delivering value, stop
doing it

 Ensure that the knowledge necessary to complete an assigned work task is in the
hands of the developer. This will prevent the need to switch tasks caused by
missing information (DeMarco et al 1999)

Waiting

Poppendieck et al (2003) argues that waiting is one of the biggest wastes in software
development. Waiting is a holdup somewhere in the process, e.g. delays in starting a
project, excessive requirement documentation, delayed deployment or unnecessary
meetings. Delays are common in software development, and as such, it is common to
think of it as acceptable. In essence, waiting is waste, as it increases lead time
(Poppendieck et al 2009). The longer the lead time is, the longer it takes before the
customer can benefit from the products of the SDP.

Motion

Motion is essentially the time it takes for a developer to find the answer of a question.
The questions may be of a technical character, or in regard to customer demands. In any
case, motion is about reducing the effort, time and context switching it takes for a
developer to become informed in a particular area (Poppendieck et al 2003).

In the purpose of reducing such time, both Lundgren (2010) and Poppendieck et al
(2003) argue the necessity of self-organizing, cross-functional teams. A cross-functional
team requires a wide range of information to reach decisions, as opposed to a traditional
functional team where decision making flows in a top-down fashion. Intra-team
dynamics tend to become multi-directional rather than hierarchical. Processes encourage
consensus within teams. Also the directives given to the team tend to become more
general and less prescribed.

Corporate-level objectives drive business unit objectives, and functional departments
rely upon decisions from business unit management. Poppendieck et al (2003) argue
that organizations are becoming flatter, and functional departments are becoming less
relevant. This due to the inherent waste in motion and handovers. Handovers between
functional teams requires much communication and quickly becomes unsuitable for
efficient work flows. A handover cannot possibly include all the tacit knowledge that
has been accumulated over time. If a defect is found after the handover, teams or
individuals involved before the handover may later-on have to be disturbed in order to
fix the problem, thus losing their pace on current work tasks. Research has shown that at
least 50 percent2 of the accumulated knowledge is lost in handovers (Poppendieck et al,
2006). There are two scenarios which are particularly difficult, according to Lundgren
(2010):

2 50 percent is a conservative number (Poppendieck et al 2006).

23

 Handovers of requirements and expectations from customer to technical
implementation

 Handovers of code from implementation to test

If written handovers cannot be avoided, they should always be mixed with oral
communication (Poppendieck, 2010).

Defects

The potential waste from a defect varies with grade of impact and time until discovery
(Poppendieck et al, 2003). The longer the defect remains in the code, the more difficult
it becomes to remove it. Research by McConnell (1996) suggests that a defect that is
left undetected until construction or maintenance will cost fifty to two-hundred times as
much to fix.

Management Activities

Poppendieck (2003) argue that management only holds indirect value in a software
development process. It is important that managers have an understanding of the work
they manage. Poppendieck (2010) argues that, without a technical background,
managers are not in a position to provide guidance to technical workers. From a lean
perspective, the fundamental job of managers is to understand how the work they
manage works, and then focus how to make it better.

Control and tracking systems is usually a sign of waste in the process (Poppendieck et al
2003). When lead time is short, there is no or little need to keep track of projects in
progress. The more projects running at the same time, the more task switching and
waiting will occur among the members of the project team. The principles of flow in
lean commend that an efficient workflow would require unfinished work in the pipeline
to be kept at an absolute minimum (Poppendieck et al 2003).

24

3. Software Development at W&WW
The purpose of this chapter is to see how an enterprise company with a long tradition of
industrial manufacturing works with software development. The chapter has the
character of a case study, where how and why W&WW works with development is in
focus. The disposition of the chapter follows the hierarchical structure of W&WW:

 Section 3.1 discusses the general characteristics W&WW and its relation to the
parent company, ITT, which is the head of ITT conglomerate

 Section 3.2 focuses on the W&WW IT function and its relation to other business
units within the conglomerate, as well as how the function itself is organized

 Section 3.3 present the software development teams’ purpose and how they
work to achieve this purpose

 Section 3.4 discuss the frameworks affecting the SDP, namely ITIL and PULS2
project management

 Section 3.5 gives insight into the SDP, starting from customer initiating RFC
and ending with the RFC being implemented

3.1 Overview
W&WW is a part of the ITT Corporation conglomerate, a globally diversified
manufacturing company with revenues of US 11.7 billion in 2008, and over 40 000
employees (ITT official site 2010). ITT participates in several other global markets,
including defense and security, and motion and flow control. ITT is organized as three
business divisions, with a number of value centers as subsets of each business division
(see figure 11). In the ITT organization, every value center has a certain degree of
autonomy. Recently, however, a corporation-wide project called “One ITT” has made
efforts to centralize and unify the company, with the purpose of closer cooperation
between the parent company and the value centers (W&WW intranet 2010a).

Figure 11. Organizational overview of the ITT conglomerate. On top is the ITT
conglomerate head office. On the second level are the business divisions. The third level
is value centers, including W&WW. (Source: Author, based on W&WW intranet 2010b)

The Fluid Technology division is the world’s largest provider of water and wastewater
treatment solutions and a leading provider of pump and related technologies for

25

industrial, commercial and municipal customers. The business division had revenue of
approximately US 3.5 billion dollars in 2009 (ITT Fluid Technology 2010). W&WW is
organized as a subset of Fluid Technology. With approximately 5 800 employees
globally and 1 500 in Sweden, W&WW manufactures solutions for water and
wastewater transport, biological treatment, filtration and disinfection. W&WW started
out as a small forge in Emmaboda 1901 but has grown steadily over the years. In the
beginning of 2000 it was acquired by ITT and organized under the Fluid Technology
division (Teamleader A 2010). The headquarters are today in Sundbyberg, with R&D
and marketing functions organized there, while distribution, manufacturing and finance
functions are still in Emmaboda. Functions such as IT, human resources and purchasing
are represented at both locations to some extent. W&WW also has smaller
manufacturing plants spread out globally, namely in Shenyang, Buenos Aires and
Herford. (W&WW official site 2010)

3.2 IT function of W&WW
The IT function, with a staff of approximately 150 employees, is distributed over two
locations: the headquarters in Sundbyberg, which has the larger part, and the
manufacturing plant in Emmaboda, where some IT related services, mostly in
connection with software development, still takes place. (Teamleader A 2010;
Teamleader D 2010)

The IT function is arranged in teams, with approximately half of them focusing on IT
operations and the others on software development. Part of the IT operations, the
helpdesk and application management teams, were recently moved to a centralized IT
function in the Fluid technology division called the Service Delivery Organization
(STO) (Teamleader A 2010). The STO employs client technicians, server technicians
and other roles directly related to the IT infrastructure and operations. They do not
belong to W&WW organizationally, but their services are hired by W&WW
(Teamleader A 2010).

The other part of the IT function is the software development organization. They are
responsible for in-house development of tools related to selection, calculation and
design related to the offerings of W&WW. Almost all developed software applications
are for internal use, i.e. use within W&WW. All software development is – in contrast
to helpdesk – still directly organized under W&WW. A reason for this is that W&WW
consider software development “valuable as a differentiator against the competition [as]
most of them simply cannot offer the services we offer” (Teamleader A 2010).

3.3 Teams Involved in the SDP
The IT function is split into three branches, departments, with one to three teams
organized in each department (see figure 12).

26

Figure 12. The software development teams of W&WW, in a combined organizational
and interactional view. Under the W&WW head is an umbrella of functional units. The
software development teams are organized under departments subordinate to the IT
function. Grey boxes symbolize teams directly involved in the SDP, and red,
crosshatched lines symbolize interaction between departments (offering software
development) and functions (acting as customers). (Source: Author, based on W&WW
Intranet (2010))

The development effort is based around teams; function-specific groups with one team
leader and three to fifteen members, often geographically as well as organizationally
disperse from one another. Five separate teams are identified: the database
administrator team, the web team, the integration team, the Sundbyberg developer team
and the Emmaboda developer team. Both developer teams are large, including more
than ten members each. All teams belong to a department in the organization. The
departments are structured in accordance with the customers, i.e. the

 Emmaboda developer team, belonging to the ERP, Finance & HR department,
serves the Operations, Finance and Human Resources functions. This
department is located next to the manufacturing plant in Emmaboda

 The Sundbyberg developer team, belonging to the Sales & Product Info
department, serves R&D and sales functions. This department is located at the
headquarters in Sundbyberg

 The third department, called Architecture, is responsible for IT architecture, with
teams administering databases, integration solutions and web milieus
(Teamleader E 2010)

The current setup of teams, aligned to function, is “relatively new” (Teamleader E
2010). Earlier they had setups with a project manager and a mixed set of developers in
one small team, each catering to one or a very few specific customers. The change to

27

functional teams only came recently, with the primary reason being to address the
inflexibility that came with having such strong ties to one or a few customer
(Teamleader E 2010). The change also suited the ITIL IT operations framework well
(Teamleader B 2010).

3.3.1 Emmaboda Developer Team

The developer team in Emmaboda belongs to the ERP, Finance & HR department. The
team consists of one part dot-net developers and one part COBOL developers. The dot-
net developers are four people, mainly developing for web interfaces, while the Cobol
developers primarily develop for the mainframe using a system called IDMS. The
applications being produced are mostly used in the manufacturing and operations side
of the company, including plants in USA and Germany. (Teamleader F 2010)

Among the products being developed by the Emmaboda developer team is E-
purchasing, an Internet purchasing tool for suppliers. The portal is mainly used for
electronic communication between W&WW and its suppliers. It was launched during
the fall of 2002 and has been under continuous development since. Over the years it has
earned recognition and been given the ITT Ring of Quality Award and a nomination as
the Project of the Year by CIO Sweden (Developer A 2010). During 2008 to 2010, the
ambition is to implement E-purchasing as the sole ITT supplier portal world-wide
(W&WW Intranet 2010b).

Methodology

In 2008 the team begun experimenting with a Scrum-based methodology, initiated by
one of the newly hired developers who joined the team. He had used Scrum in his
previous workplace and had both appreciated and enjoyed this way of working
(Developer A 2010). They used the book Scrum and XP from the Trenches by Henrik
Kniberg (2007) for guidance, and “followed it pretty much to the letter” (Developer A
2010). The teamleader was given the Scrum Master role. She had no previous
knowledge of what it actually meant or what she was supposed to do, but it “quickly
became clear”. (Scrum Master 2010)

3.3.2 Sundbyberg Developer Team

The Sundbyberg developer team consists of six people – a mix of employees and
consultants – geographically placed together at the same floor of the headquarters. The
customer group is mainly R&D, sales and marketing, all located in the headquarters as
well (Teamleader E 2010). The team supports over 40 systems and applications which
range from “practically un-used to business critical” (Teamleader E 2010). The
application portfolio include configurators, which are systems to assist in the selection
of equipment for a particular distributor, and documentation centers, which include
documentation and service guidelines that the distributors can access directly via the
web. The configurators are the area where most effort will be put in the future
(Teamleader A 2010). They differentiate W&WW from the competition by offering a
“powerful yet cheap” (Teamleader A 2010) way to calculate and simulate different
scenarios, simply by contacting the sales function. Other companies does not offer this
service, instead they force you to use specialist consultants in order to get the proper
calculations for your equipment (Developer B 2010).

The main technical platform is dot-net, but because the team also administers wide
range of old systems built over a time-span of 30 years, there is also a need to maintain

28

skills within FORTRAN and Visual basic for maintenance work (Teamleader C and D
2010).

Methodology

Only parts of the development effort are organized according to any methodology, and
those parts are mostly routines related to ITIL. Due to a large number of applications
and the specialist knowledge they require, much of the development is instead run on an
ad-hoc basis by single developers (Teamleader A 2010). When there is a lack of
competence, consultants are often contracted. The consultants, however, does not
“bother which methodology they are using, they just work as they are told to”
(Teamleader A 2010).

3.3.3 Integration Team

The integration team consists of one teamleader and three consultants, all localized next
to one another in the headquarters. The purpose of the integration team is to offer
“flexible integration solutions” (Teamleader B 2010); i.e. to make communication
between IT systems efficient. In practice this is done by exposing services and APIs for
other systems to access. By keeping the system dependency low, it’s easier to make
changes in one system without affecting the performance of other systems (Teamleader
B 2010). The team updates old as well as new systems with services that are constructed
in accordance with this principle.

Methodology

The team is overloaded with requests from other teams which sometimes lead to long
wait times for tasks entering the integration phase (Teamleader B 2010; Teamleader E
2010). In order to reduce wait time and keep better track of current work items, they use
a digital Kanban board. The board (see figure 13) is stored in a collaboration space on
the intranet. Part of the purpose of keeping the Kanban board digital is to give other
teams – and “anybody else who is interested” (Teamleader B 2010) – some insight into
what the team is currently doing, and what they are planning to do for some time ahead.
(Teamleader B 2010)

29

Figure 13. Digital Kanban board, as used by the integration team. Tasks are picked
from the backlog state and then moved to the right as coding, testing and deployment
takes place. Notice the red stop signs on some tasks, indicating that the task is waiting
for input. (Source: W&WW Intranet 2010c)

Because so many tasks are waiting for input, the board is currently plotted with stop
signs. When all tasks have stop signs, the team simply adds more tasks, ignoring the
work-in-progress limit for the current workflow state (Teamleader B 2010). The board
has helped for internal team coordination and visibility, but it does not help
coordination with other teams. There is still too much external dependencies to other
teams to make the work flow efficient and lead time shorter (Teamleader B 2010).
Neither does the other teams prioritize nor “select tasks the same way we do”
(Teamleader B 2010). The problem of coordinating work between teams has been noted
several times, but discussions with management have not corrected the problem. The
integration team has the mandate to change their work process, but not intervene with
how other teams work (Teamleader B 2010; Teamleader E 2010). All in all, however,
the team is satisfied with their Kanban board and thinks that it could serve as a first step
to facilitate coordination if the other teams had one as well (Teamleader B 2010).

3.3.4 Database Administrator Team

The database administrator team is responsible for the design, implementation,
maintenance and repair of W&WWs databases. Also included in the tasks of the team
are development and design of database strategies, monitoring and improving database
performance and planning for future expansion requirements. As such, all software
development efforts must seek acceptance with the database administrators before
deploying to the production environment (Teamleader A 2010). Although database
models and relations can be constructed by the developers themselves, they must still

30

seek acceptance from the database administrator team to deploy any changes (Scrum
Master 2010).

3.3.5 Web Team

The web team has, similarly to the database administrator team, a primarily operational
role in the organization. They are not directly involved in the software development
effort by means of coding; instead they have the responsibility of uploading and
ensuring the continuous viability of applications made available on the intranet, the
extranet and the Internet. (Teamleader A 2010)

Methodology

The team picks tasks using a helpdesk tracking system. Tasks are delegated from the
main helpdesk team belonging to the service delivery organization (see 3.2). Once
delegated the task shows up on the screen of the team member. The member then picks
a task, often related to her skills or a priority level. (Teamleader A 2010)

3.3.6 Communication and Coordination

There is little coordination in terms of how the developer teams approach their daily
work, and long-time cooperation is rare (Teamleader F 2010). The teamleader in
Emmaboda could only recall one project in the last few years where they had
cooperated. That project had a cross-functional setup, with developers from both the
Sundbyberg and Emmaboda team working together. The team leader recall this project
being a success, and that it was “wonderful to have all the needed competences
available in the project under one manager” (Manager 2010). The possibility of further
cooperation in such manner has not been investigated. As of 2010, there is no
widespread knowledge in regard to how the other department is working – or even what
they are working with (Teamleader F 2010).

From a coordination viewpoint, tasks are generally carried out in a sequential fashion,
i.e. once a team is done with their part, the task is moved on to another team. Practically
all tasks need expertise from at least two teams (Developer A 2010). The Emmaboda
developer team has noted extensive lead-times when interacting with other teams to test
or integrate (Teamleader F 2010). Even if they succeed with their Scrum sprint, i.e.
produce deliverables according to plan, the other teams might not be ready to take up
the task. This often because different teams may have different work in the pipeline, and
that work may have been prioritized higher by the department manager. On occasion,
wait times are several months (Teamleader F 2010).

There have been at least two efforts to improve the communication. A few years ago, a
resource planning meeting was held regularly. In the end, however, the meeting became
“useless” (Manager 2010) because all managers could not account for what resources
they disposed and when the resources were available (Manager 2010). Currently, a new
effort is taking place to coordinate the teams. This time it’s the teamleaders working
together to schedule meetings where some basic coordination can be made (Teamleader
E 2010). The meeting is usually short, mainly just asking “what are you guys doing the
next few weeks?” (Teamleader B 2010). The effort has not yet been evaluated, but there
is a general positive attitude towards the initiative (Teamleader B 2010; Teamleader E
2010). The meeting, however, is limited to the Sales & product info department.
Teamleaders in other departments have not been involved in the effort (Teamleader E
2010).

31

3.4 Frameworks
The Software development teams are subordinate to the IT function, and the IT function
is subordinate to the IT function of the parent company, ITT. As such, some IT policies
and practices that the parent company adheres must also be by honored by W&WW.
Two frameworks affect the development effort directly (Teamleader A 2010):

 Information technology infrastructure library (ITIL), a framework of “best
practices” and concepts for IT functions and, particularly, IT operations. ITIL is
the basis of the processes describing software development (mainly the change
management process)

 Value-based lean six sigma (VBLSS), a lean-based philosophy derived from the
manufacturing and production part of the company. The project management
model PULS2 is maintained by the VBLSS function

They both affect the routines and activities of the SDP, and as such they must be taken
into account as important factor regulating the process.

3.4.1 ITIL

ITIL is a set of concepts and practices for IT service management. Its main focus is to

Optimize the operations of an IT organization, i.e. the processes responsible for the
day-to-day monitoring and management of IT services and the IT Infrastructure
they depend on (Richmond Systems 2010)

As an IT service management framework, ITIL is more concerned with the above
mentioned operational concerns of the IT function, and less with technology and
software development (ITIL official site 2010; Teamleader A 2010).

ITIL is very prescriptive. It includes detailed descriptions of all common practices in IT.
The descriptions provide wide-ranging checklists, tasks and procedures that “pretty
much any IT organization can tailor to its needs” (ITIL official site 2010). ITIL is
published in a series of books, each of which covers an IT management topic. The
United Kingdom's Office of Government Commerce is the organization behind the
framework, and they continuously updated the framework to match lasting trends in the
industry. (ITIL official site 2010)

Over the years, ITIL has shifted management approach several times. Early on it
described IT as a pure support function. In 2001, process management was added. In
2007 ITIL shifted focus to include IT as a value-adding business, publishing it as
version 3. Today the framework has a service-oriented focus, with the purpose of
integrating IT with the core business of the company. It has also become the most
widely used IT service management approach in the world. (ITIL official site 2010)

Change Management

The ITIL Change management process, which is central to the W&WW SDP, is about
managing change, i.e. assessing the impact, cost, benefit and risk of a proposed change
in the IT environment. At ITT W&WW this explicitly involves developing business
justification and obtaining approval, managing and coordinating the change
implementation, monitoring and reporting on implementation, reviewing and closing
change requests (Teamleader E 2010). ITIL defines change management as a way to

32

[…] ensure that standardized methods and procedures are used for efficient and
prompt handling of all changes, in order to minimize the impact of change-related
incidents upon service quality, and consequently improve the day-to-day operations
of the organization (ITIL official site 2010)

Change management processes are often responsible for managing change in hardware,
communications equipment and software, system software, and all documentation and
procedures associated with the running, support and maintenance of live systems (ITIL
official site 2010).

ITIL in projects

At ITT W&WW, change management is not responsible for overseeing changes that
occur within development projects. Projects are delegated to a change management
process dictated by the project management methodology called PULS2 (W&WW
Intranet 2009). Still, close communication between project managers and the change
manager is a must, as the project manager may be required to utilize change
management resources for tasks that need the production or test environments, i.e.
testing or release tasks (W&WW Intranet 2009).

3.4.2 PULS2 Project Management Template

The project management template PULS2 is used by all units except R&D at W&WW
(W&WW Intranet 2009). The purpose of the PULS2 template is to offer a set of specific
plans and actions to achieve a change in a given timeframe with focus on cost and scope
constraints and to utilize resources effectively. The PULS2 template offers a set of
activities and toll gates (see figure 14).

Figure 14. Project Management PULS2 template. The template includes six gates that
must be passed before the product is deployed: TG 0, TG 1, TG 2, TG 3, TG 4 and TG
5. (Source: Author, based on W&WW Intranet 2009)

The purpose of the toll gates (TGs) is to secure proper completion of the previous step,
thus verifying that the project is ready to move on to the next phase. TGs are explicitly
described as a risk assessment tool to “lower the risk of the project” (W&WW Intranet
2009). To pass each gate, the requirements are as follows:

 TG 0 requires project prioritization and an assigned project leader
 TG 1 requires a go-decision to start the project. There must also be a project

group and decision group (the decision group take the TG1 decision)
 TG 2 requires a decision regarding which solution to implement. After TG2 the

development start

33

 TG 3 requires a final implemented solution. A decision must be taken on what is
needed for a handover to the project receiver/customer. This tollgate is regarded
particularly important, because it include the formal (and mutual) decision to
handover the solution to line management. The control document explicitly state
that “many projects have previously ended here due to a vague hand-over
process and expected projects have not been fulfilled.” (W&WW Intranet 2009)

 TG4 requires verification that the hand-over to the customer is finalized, and
performed in a satisfactory way

 TG 5 is a follow-up evaluation of the project. This part is almost never
completed (Teamleader A 2010)

Since PULS2 is not part of the change management process of the ITIL framework, it is
instead layered over the change management process. As such, it adds or extends some
activities in the SDP. Among these activities is the project application request (PAR)
revision. The purpose of the PAR is to secure the economical validity of the project
(W&WW Intranet 2010d). PULS2 requires that all projects complete a PAR revision
before initiated.

3.5 The Software Development Process
The SDP is for the most part, as we noted in 3.4, described in the change management
process. W&WW has made an effort to map the entire SDP in a set of change
management process maps. Depending on the work form, task or project, of the
software development effort, the SDP may either be limited to the

 change management process (see Appendix III) or
 change management process combined with the formal PULS2 project

management template (see Appendix IV)

The change management process map is a few years old, and the PULS2 process map is
only in draft release (and has been so for a year or more). Therefore the actual workflow
might be somewhat different to what the process maps suggest. They, however, serve as
a guide to structure the workflow in this section. From a high level perspective, the SDP
can be merged to one model, both for tasks and PULS2 projects. The whole process
then includes six activities (see figure 15).

34

Figure 15. The SDP as an interaction between the change management process and the
task and project management model. The change advisory board (CAB) serves a gate
keeper between steps in the process. (Source: Author, based on Rudy Stubler 2008)

The next section goes through the relevant activities, starting from the customer
initiating an RFC and ending with implementation.

3.5.1 Customer Initiating an RFC

Every development effort is started with an idea or suggestion. The idea can be an
improvement or bug fix to an existing system, or be an idea for a completely new
system. The idea is formalized in a request for change (RFC). Within W&WW ITIL
terminology, RFCs contains a description of a wanted change in an IT system
(Teamleader A 2010). The RFC states what is in need of change, but does not include
how the change is to be carried out. The attributes includes an ID, name of the customer
ordering the change, deadline for the change, an indication whether the change is
required or optional, a change type and an abstract (see figure 16).

35

Figure 16. A Typical Request For Change (RFC), filled in by a customer. The RFC
includes fields for requester (customer), date/ready date (deadline), affected
application/program/database, problem description and impact analysis. (Source:
W&WW Intranet 2010c)

RFCs usually originate from one of the following five sources (Teamleader A 2010):

 Problem reports that identify bugs that must be fixed (the most common source)
 system enhancement requests from users
 events in the development of other systems, due to dependencies
 changes in underlying structure and/or standards (e.g. a new operating system)

The RFC is filled in by a requester – a customer or user – and then e-mailed to the
inbox of the customer responsible. The customer responsible then analyzes the RFC,
which typically takes 1 hour (Purchaser 2010). If it’s deemed to need a more detailed
specification a pre-study is conducted, commonly with the help of one or a few
developers (Teamleader F 2010). The RFC is then returned to the customer for
consideration and approval. If accepted, the RFC is classified during registration and
classification.

36

3.5.2 Registration and Classification

Depending on the result of the pre-study, the RFC is classified as a PULS2 project (over
200 working hours and one million SEK) or a task (less than 200 working hours). In
addition, W&WW control document (W&WW intranet 2010e) state that a project must
have the following characteristics:

[…] unique and has well defined improvement objectives; is of non- recurring
nature; has a temporary project organization; and is limited in time.

If the RFC is classified as a project, project management methodology PULS2 must be
followed. Projects using PULS2 are not very common with the Emmaboda developer
team. They estimate that less than 20 percent of their time is spent in projects (Scrum
Master 2010). In Sundbyberg, the developer team estimates that they spend 40 percent
of their time in projects (Teamleader C 2010).

3.5.3 Monitoring and Planning

After classification and authorization, the RFC is registered as being ready for planning.
It is then delegated to the appropriate developer team with regard to the customer. How
the RFC is handled once it is delegated differs greatly between the teams. With the
developers in Emmaboda, the RFC is stored in a spreadsheet (see Appendix II). In
Sundbyberg, on the other hand, most RFCs are registered in a collaboration web portal
used for tracking projects (see Appendix I). In a few days, when the handler is available,
the RFC is up for resource planning (Teamleader E 2010). The purpose of resource
planning is to claim resources so that the RFC task list can be completed. When time
estimation and resource allocation is done, the RFC is sent back to the program
responsible (Teamleader E 2010). The program responsible may choose whether to
authorize and thus continue the process, or reject and stop the process. Should the
program responsible choose to continue, then a handler must be selected. The handler
is, essentially, a project manager in ITIL terminology (Teamleader E 2010). With the
appropriate handler selected, authorization must be given by the system owner before
the program responsible can update RFC with handler information. When the resources
and the handler is deemed available, then the resource owner give a go to the handler.
The handler then starts planning, which typically takes one or two days. When planning
is ready, the RFC enter the next stage, CAB1 approval. Physical CAB1 meetings are
only summoned once a month, but approval can also be attained via e-mail (Teamleader
E 2010).

3.5.4 Change Advisory Board Meeting (CAB1)

The CAB meeting is a central activity in the W&WW change management process. It
serves to balance the need for change with the need to minimize risks of data loss or
downtime (Teamleader E 2010). The CAB is responsible for overseeing all changes in
the production environment. As such, it has requests coming in not only from IT, but
also from management, customers and users (Teamleader E 2010). The changes involve
hardware, software, configuration settings and patches (ITIL official site 2010). The
CAB group delivers support to the change management team by approving requested
changes and assisting in the assessment and prioritization of changes. Members are
chosen to ensure that the requested changes are thoroughly checked and assessed from
both a technical and business perspective (Teamleader E 2010). The RFC type will
dictate the required personnel to participate in the meeting. They are not required to
meet face-to-face on each requested change, but rather use electronic support and

37

communication tools as a medium. Once the CAB1 meeting is over and the RFCs are
rejected or accepted and prioritized, the building and test phase begins (Teamleader E
2010).

3.5.5 Building and Test

If the RFC, in keeping with change management, is considered a standard change, then
a standard operating procedure (SOP) is used. The SOP defines when, where, how, by
whom and under what circumstances a standard change should be conducted. It is a
written document detailing all the steps and activities of a standardized procedure. In the
W&WW SDP, and probably most software development efforts, not many changes are
considered standard changes (due to their complex nature, see 2.1.1). It is thus rare that
a standard operating procedure is performed. The Sundbyberg teamleader could not
recall “any occasion at all” (Teamleader E 2010). Instead, the development process
typically sets in, where a software solution is built and tested from scratch. (Teamleader
E 2010)

The development process involves coding and testing which, for an average task,
typically takes typically 50 hours to complete (Teamleader E 2010). How these
activities are organized differs between the teams. The Scrum-based Emmaboda
developer team generates work items from a spreadsheet. With a built-in script, they can
automatically create work items that correspond to RFCs. The cards then serve as the
product backlog for the upcoming sprint meeting. Once the sprint backlog is set, the
sprint begins and then carries on for four weeks. Recently, however, the time-box was
reduced to two weeks in an effort to shorten lead time. The effects of this change have
not yet been evaluated (Manager 2010). At the start of each Scrum sprint, as the
developer picks a task, he immediately calls the customer to arrange a UAT. This
routine enables testing to be done as soon as the code is considered ready. (Manager
2010) An issue experienced by the teamleader in Emmaboda is that RFCs often need to
be split into two or more work items to be feasible to code within one sprint. If RFCs
are too large when pulled into the sprint they may not be finished during the time-boxed
iteration, rendering the burndown charts useless. (Teamleader F 2010)

The Sundbyberg developer team’s development phase is handled differently. The
developers are being delegated RFCs that suit their particular area of expertise, usually
one or a few applications towards one or a few customers (Teamleader E 2010). The
customer responsible group, who selects the RFCs to work on, does not prioritize work
internally, although efforts to “have scheduled prioritization meetings is in the pipeline”
(Teamleader E 2010). It’s hardly ever more than one developer working on a task or
project at the same time (Teamleader E 2010).

Added code to applications is not reviewed by other developers. Neither are there any
requirements to follow code conventions or other standardizations. Most code branches
are currently not stored centrally. Recently, however, an open-source code configuration
tool, Subversion, was installed with the purpose to centralize all management and
configuration of application code. The idea came from one of the consultants who felt
that it was too complicated to overview the code base of all applications. (Teamleader E
2010)

When the build and test activity is done, the handler and system owner must approve
the new solution, which typically takes a few days. If approved, the solution is ready for

38

deployment into production. The CAB2 meeting is summoned to approve the final
release of the into production. (Teamleader E 2010)

3.5.6 Change Advisory Board 2 (CAB2) and Implementation

The purpose of the CAB2 is to authorize the deployment of solutions to the production
environment. Depending on the size of RFC and the corresponding solution the meeting
might be shortened to a few e-mails or phone calls. If the RFC is significant, however, a
full-scale CAB meeting is needed. These are only held once a month, at a specific date.
The change release is then fitted into a slot, a time-boxed window when changes to
systems can be made. The new update or system is then available for the user.
(Teamleader E 2010)

39

4. Analysis
The analysis part of this study is conducted in four steps:

 First a value stream mapping (see 2.3.2) of the entire SDP. The purpose of this
analysis is to estimate efficiency of the process in terms of value-adding
activities set against wait states. It also reveals the most immediate bottlenecks
impairing lead-time in the process

 The second part focuses on the development (build and test) part of the SDP and
uses the seven wastes concept as guidelines to qualitatively discuss waste in the
SDP

 The third step merges insights from step one and step two and discusses how
W&WW current agile implementations are performing in this environment

 The fourth part discusses and proposes changes in the SDP to better adapt it to
lean and agile philosophies, and what the benefits and costs of such a change
may be

4.1 Value Stream Mapping and Process Efficiency
The value stream map is a natural starting point in analyzing the efficiency of an
organization (see 2.3.3) and serves as the starting point of the analysis. The purpose of
the value stream is to capture work-time and wait-time in the whole process from
customer back to user. A number of assumptions were made during the construction of
the map:

 The value map is a high-level approach, as discussed in 2.3.2, causing some
activities to be bundled together

 The unit of measurement is discrete hours, i.e. the minimum time spent on any
activity is one hour

 When an activity is estimated with a time span, the wait-times and work-times
are roughly estimated with the expectation-value, i.e. a four-to-six weeks task
would take five weeks in average

 The teamleader was explicitly instructed to round of times down to the nearest
hour. As such, all wait-times are probably somewhat longer in the real workflow

 The development phase (building and testing) is seen as one activity, although a
more detailed investigation in the next section, 4.2, will show that waiting time
occurs within this phase too

The final value map is presented in figure 17.

40

Figure 17. Value stream map of the SDP on three inter-connected rows, starting with a
request for change and ending with deployment. The value map identifies work time and
wait time for 16 activities in the process. (Source: Author)

The value stream has 107 hours of value-adding work time, out of a total of 300 hours
in the process. Division gives that 36 percent of the process is value-adding, thus
leaving approximately 64 percent as waste. A one-third efficiency rate is much in line
with how prescriptive traditional SDPs usually perform (see section 2.3.3).

4.1.1 Bottlenecks

The most significant waste of the process is the wait-time for the CAB1 meeting.
Because the meeting is scheduled only once a month, a task is prolonged with an
average of 80 hours during this phase. A second prominent waste is the handshake
actions; there is a systematic waiting time in confirming different steps in the process.
Because so many actors and regulatory actions are required, much time is spent just
filling in, mailing, printing and signing papers. A few of these steps seems to be
approval processes that always grants approval as well. Such process preparation work
and project close up work is very wasteful. There is no independent value to these
activities, nor do they produce any direct or indirect value in the final product.

4.1.2 Waste

To go into more detail and identify waste in the activities, the seven wastes of lean
software development is just for comparison (see 2.3.3). Not all wastes are easily
identified in the context of W&WW; this does not make them non-existing. They can be
hidden by paperwork or ad-hoc processes.

Partially Done Work

Partially done work is common in the W&WW organization, indicated by a large
number of long-running and unfinished projects (see 3.5.2). The PULS2 template
explicitly states that many projects never make it to TG 4, indicating that the problem is
known and existing, but not addressed properly. In this case, the holdup seems to be

41

outside of the requirement and development phase (which is before TG 3). Ergo, the
software development solution is finalized, but the organization cannot afford, or are not
interested, in taking ownership of the product. These problems may be due to quality
problems, i.e. that the product do not fulfill the expectations or demands of the
customer, or that the project overran time and budget, and thus is not relevant anymore
for the paying customer. Instead of paperwork such as the PULS2 template, with
explicit instructions that aims to remedy inherent waste or quality problems, lean
software development principles provide that these problems should be confronted
much earlier. With minimized lead time and iteratively adjusted customer requirements,
few projects should need to be cancelled or caught in a status quo at TG4.

Extra Processes

The extra processes waste is essentially about unnecessary processes that not add any
direct or indirect value for the customer. At W&WW, the terminology and activities
prescribed by ITIL is used in most IT processes. As such, it has a central and important
role in the IT organization. W&WWs ITIL implementation has reached a state
somewhere between version 2 and 3; it’s transitioned into process management but has
not yet implemented all service-oriented aspects of ITIL (see 3.4.1). Even though ITIL
version 2 strongly advises the use of process-oriented workflows, few of W&WW
process maps actually show up-to-date information of how the SDP works. In particular
maps that describe the integration with PULS2 are non-existing. Work may be in the
line for new process maps, but so far it’s taken half a year and yet only resulted in drafts
(another case of partially done work). It is also interesting to note that the specific
development phase (as in build and test) not even has a process map. As of now, much
of the effort is on an ad-hoc basis, with only a few managers who can overview the
whole process and all actors involved. They are also the only ones with mandate to
change it.

The combination of ITIL best practices and PULS2 project management activities result
in an exceedingly plan-driven course of action that makes the SDP bureaucratic and
slow. As noted in the value mapping – process efficiency is even lower than expected
from the average plan-driven traditional methodology (see 2.3.2). Lean software
development advocates the empowerment of people who are experts in the process. But,
among the developers themselves, there is little understanding of why they are working
in such a paperwork heavy process. They do not see the point of RFCs, mainly because
the amount of paperwork halts their work progress and takes focus from developing. A
more appropriate approach, and much in line with lean principles, would be to simplify
the maps by elevating them to a higher abstraction level and limit unnecessary detail.
Document the knowledge where necessary, but avoid using complicated tools that may
require licensing or software. The use of wiki-type documentation is one way to
encourage the evolution of documentation structure to best fit the knowledge of the
developers, as argued in 2.3.3. Minimize static PDFs that need printing and signing by
using, for example, digital signatures.

Extra Features

Interviewees indicate that the waste of creating extra features not is prevalent in the
organization. This may or may not be the case, none of the empirical evidence suggests
differently.

42

Waiting

In the development phase of the SDP, the majority of wait-states are created in
handover actions between teams. At more than a few occasions, the gap has been
several months or longer, this mainly because the integration team has too much work
the pipeline. The problem, however, is known and efforts are taking place to allocate
more resources (see 3.3.3).

Motion and Task Switching

Every time a developer needs to change context or task, both flow and time is lost in the
process. The need for task switching and motion should therefore be minimized to
maximize productivity. Paperwork that not adds value to the customer should be away
with, and the rest should preferably be handled by teamleaders or management.

The departments of the IT function have a strictly functional setup with specialized
teams (as discussed in 3.3). This cause great need of motion as teams need to be
informed of other teams on a regular basis. It can be argued that the problem is less
prominent for the Sundbyberg developer team, as they are located at headquarters where
most of the integration, web, and database teams also coordinate their work. With
regard to the Emmaboda team, however, the geographical distance is an important
dimension. Interviews reveal that communication between teams (and customers) in
Sundbyberg and Emmaboda has been weak at best. Virtually no cooperation between
the developer teams has rendered a silo mentality among management as well as
developers.

Defects

Approximately 40 percent of the Sundbyberg developer team’s time is spent on
maintaining current systems, which may indicate complex code and a relatively high
degree of defects. The lack of quality assurance in terms of code reviews or coding
standards (see 3.5.5) adds extra time when a new or inexperienced developer needs to
reconfigure any part of a system. With code configuration tools such as Subversion
currently being installed, the situation may improve. There is still a dire need, however,
to setup routines in order to insure standardization, organization and quality of the code
produced in the SDP.

Management Activities

A large project and task tracking system is used. It is, however, not used by all
departments (see 3.5.2). Many projects are outdated or irrelevant, but are still
maintained by the tracking system. The tracking system includes much metadata and
thus requires much effort to maintain. The question is to what extent the tracking system
actually brings value. The need of a tracking system increases as the lead time of tasks
and project increase. A large and complex tracking system is a result of waste in the
process, and also a large waste in its own right.

4.2 The Current State of Agile
The previous sections identified waste and discussed waste in, first, the entire SDP, and
second, in the existence of seven common wastes according to the lean software
development framework. The following section uses some of those insights, but instead
focuses on the teams and their methodology and communication. Agile methodologies

43

have some impact, but depending on purpose, customers and technical expertise (see
table 3), success of their implementation has varied from low to moderate.

Table 3. Comparison between teams in terms of purpose, customer(s), methodology and
visual aids. (Source: Author)

 Sundbyberg
developers

Emmaboda
developers

Integration Web Database
administrators

Purpose Develop web
and client-
server
solutions using
Vb6, dot-net
and Fortran

Develop
mainframe
solutions using
Cobol. Develop
web solutions
using dot-net

Create
interfaces
between
systems (SOA)

Enable/adjust
web server in
production
environment

Enable/adjust
application
database in
production
environment

Customer(s) R&D, Sales Operations,
Finance, HR

Architecture
(IT dept.)

Architecture
(IT dept.)

Architecture
(IT dept.)

Methodology Ad-hoc. Has a
written target
to implement
agile methods
Scrum and
Kanban under
2010

Scrum to some
extent. Are
moving over to
ultimately use
Kanban only

Kanban.
Purpose is to
maintain focus
on a few tasks
at the time

Ad-hoc Ad-hoc

Visual aids None Physical
Scrum/Kanban
board in room

Digital
Kanban-board

Issue tracking
system, to
some extent

Issue tracking
system, to
some extent

Methodologies

The relationship between the Emmaboda and Sundbyberg teams has a geographical as
well as a cultural dimension. The closeness to the factory seems to have made the
Emmaboda developer team more open to lean practices. The opposite is also valid; i.e.
the Sundbyberg developer team, being closer to head management at the headquarters,
is more influenced by the parent company.

The Emmaboda team implemented Scrum, pretty much to the letter, some two years
ago. But the positive effects, as 3.5 shows, are not obvious, and the implementation has
been semi-functional at best. The visualization has been appreciated by managers and
teamleaders alike, but the iterative approach has not worked smoothly (see 3.3.1). The
deep vertical expertise among some of the developers has made it difficult or simply
unmanageable to share work in the sprints.

Large RFCs cause problems. They effectively render the Scrum burndown chart useless,
and are seldom completed in time with the sprint. Instead such RFCs are often returned
to the backlog again, leaving the possibility of other RFCs becoming prioritized higher
in the next sprint. The main reason behind this seems to be the difficulty to resize and
split RFCs into work items that are small enough to complete in one sprint (see 3.5.3).

The Emmaboda team has an ambition to constantly improve and to which can be seen
by their adaptation of, first, Scrum and later on, Kanban. Not at all times successfully,
but with proper feedback loops they should be able to become increasingly so. The
team’s effort to change methodology to Kanban, however, will most likely not render
any radical improvement over the current situation. The problem of coordination and

44

communication with other teams will still remain. What Kanban will offer though, is the
opportunity to visualize wait states in the current process. With concrete stop signs (or
other symbols that the team may prefer) on the board it should be much easier to discuss
new ways of working with management.

At Sundbyberg, some of the same effort to improve exists, but success has proven even
harder to achieve. With the developer team this is due to the strong dependency between
developers and products; each developer has a large vertical expertise in a small range
of systems. The integration team, on the other hand, has the horizontal expertise needed
to share work items, but instead they encounter problem in the coordination with other
teams. Their methodology includes a digital Kanban board to visualize workflow, both
for themselves and for other teams requiring their services. But, due to lack of
coordination, the board is riddled with stop signs (work items waiting for external
input). They try to remedy this by adjusting the work-in-progress constraint. This
defeats Kanban’s main purpose (see 2.2.2) of achieving a constant and rapid flow of
tasks. In conclusion, neither Scrum nor Kanban works properly in the current W&WW
organization; they both encounter problem in relation to organization.

4.3 The Conflict between ITIL, Regulation and Agile
One explanation why ITIL and agile methodologies do not integrate well is found in the
complexity of processes (see 2.1.1). In traditional manufacturing-inspired SDPs based
on prescriptive waterfall methodologies, change is viewed as an exception, an anomaly.
In such processes the management plans for change, trying to predict all possible risks
that inflict a particular workflow. This is difficult and even, in many scenarios,
practically impossible. Agile teams, conversely, are by definition based on the
assumption that changes are typical events in an SDP, and nor can nor should be
avoided. It’s a paradox: By accepting risk and adapt to it, development should become
more predictable, not the opposite.

RFCs can be described as having a small-sized traditional waterfall design.
Requirements for the change are documented up front and evaluated by analysts.
Stakeholders approve changes before the RFCs are even built and tested, assuming that
requirements, scope, risk, and design can be formally documented ahead of making a
code change. The ITIL change management process also requires extensive
documentation and paperwork. The process is designed as much, if not more, to capture
document change as it is to take effective decisions. Change request forms are signed,
printed and kept with dates and identifiers so that the approver remains known. The
teams have no mandate to drive their own changes, instead approval must come at
several different stages, adding more and more wait states to the process.

In an agile project, one of the principles is to compress the team and reduce hierarchies
so that people effectively can communicate (see 2.1.4). At W&WW, ITIL change
management processes demands specialized knowledge, special authority of approval
and a hierarchical command and control structure. Project managers or developers may
be the writers of RFCs, but they must still get approval from other stakeholders who
will bless the change. This inevitably slows down the process.

45

4.4 Suggestions For An Agile SDP
The previous section analyzes how agile and lean principles perform at W&WW, and
identifies a number of obstacles impairing the agile effort. In this section the most
apparent opportunities to improve are presented and discussed.

4.4.1 Application portfolio and Single-point-of-failure

The first need of the organization is to evaluate the number of supported applications.
There is a large risk in having a single developer with deep vertical expertise in one or a
few system. This single-point-of-failure scenario is the most critical problem in the
W&WW organization, and also a bottleneck in improving the process. The problem can
and should be approached from several angles at the same time:

 Review the IT portfolio: What applications are actually being used? Measure the
actual use by logging access to its network path or similar. Talk to the users.
How and why do they still use the application?

 What applications can be phased out over time? Setup a plan to discontinue
program that has less than a given amount of uses each month

 Well-used applications that are difficult to maintain: Either (1) make sure that at
least two developers have the competence to maintain the application or (2)
refactor the application to the standard platform so that other developers may
understand the code as well

 Implement coding standards and code reviews. As we saw in 2.3.2, good code
requires less documentation, since the code itself acts as documentation. Code
reviews by a second developer might seem like a waste, but will add value in the
long run, simply by keeping quality high

As the risk of a single-point-of-failure scenario is reduced and the number of
applications are minimized, team work within the organization should become
increasingly effective.

4.4.2 Team Setup and Communication

The isolation between the Emmaboda department and the Sundbyberg department is
strong. Teamleaders put their own team at first hand, although this is not the most
effective way seen from a holistic lean perspective. Today, the teams are split up on a
functional basis. The reasons behind the organizational change creating these functional
silos are only partly revealed, but it is reasonable to think that these changes came after
the acquisition of W&WW by the ITT Corporation. The larger an enterprise becomes,
the more difficult it becomes to organize effectively. Today’s change processes based in
manufacturing and IT operational thinking, where all changes must be approved to
maintain a high level of service availability in the IT systems, is, inherently ineffective
for software development according to lean and agile principles.

An agile solution to improve communication is the cross-functional, self-organizing
team (see 2.1.4). Cross-functional team setups at W&WW are rare, but have been used
at least on a few occasions (see 3.3.2). During these occasions they performed well, and
at least one manager in Emmaboda expressed her satisfaction with that kind of setup.
Generally, however, the attitudes towards cross-functional teams can best be described
as passive, they seem to remain an exception. A major step would be to re-evaluate the
change from functional to cross-functional team compositions. Cross-functional teams,

46

with responsibility and control of their own development process, will have much less
need of task switching, team coordination and communication, and will also – maybe
most importantly – take greater pride in their work.

4.4.3 A Cross-Functional Team

A change to cross-functional teams would require managers to, rather than to staff roles
via separate teams (see 3.3.2), create teams composed of analysts, architects (web and
database administrators) and developers. Two teams are proposed in figure 18, one with
base in Emmaboda, and one with base in Sundbyberg.

Figure 18. Two cross-functional teams with their own dedicated resources for
development and architecture. Team alpha with Emmaboda lead, and team beta with
Sundbyberg lead. (Source: Author)

Cross-functional teams are very effective in order to reduce the waste in handovers and
communication. But to implement cross-functional teams, W&WW must find ways to
integrate disparate teams efficiently. Although the geographical distance might instigate
problems, these can be minimized by communication. Teams could begin each project
or quarter with one initial team startup meeting (as proposed in 2.2.1) where the whole
team gathers. Daily standup meetings can be held over phone or video connection. The
focus of the cross-functional team would be proper information-rich, and motion-less
communication rather than written documents. A natural priority order in
communication would be face-to-face, telephone or voice chat, voice mail, email and
last, documents (see 2.3.3). Measurable metrics would initially be lead-time and budget.

As a visual aid, a digital Kanban board could simply but efficiently describe the whole
process and what is going on in the teams. Since most competence and authority that is
required exist in the team, less bottlenecks (or stop signs) should clog the flow. There is
still, however, external dependencies to the customer responsible team that may be more
difficult to over bridge. W&WW has, however, because all stakeholders of the SDP are
in-house, the advantage of being able to restructure in order to facilitate these changes.

4.5 Discussion: How to Keep Improving
So far in the analysis chapter, focus has been on how to reduce waste by thinking and
acting according agile and lean principles. In this last section, I discuss how to improve
from a general perspective and to what extent agile should and could be a part of such
an effort.

The first thing I noticed when starting my work at W&WW was the lack of relevant key
performance indicators (KPIs). There was no way to tell whether the organization was
effective or not in terms of productivity. There was time-sheet numbers on the amount

47

of work spent in maintenance and on different projects, but that did not really speak
much about how the process itself performed. If the output of the SDP was measured,
improvement could more easily be identified. The recent installation of a single
software versioning and revision control system should make this easier. A basic KPI
for productivity can be defined, perhaps using story points or other metrics as the unit of
measurement. A second tool, the value stream map, could act as a powerful complement
to the KPIs to continuously improve the lead time of the process.

The second thing I noticed when starting up my work at W&WW was the uncertainty of
the organizational structure. Numerous changes had made the internal communication
unclear. There was also a firm ambition of integrating the W&WW value center with
other parts of the ITT Corporation and the Fluid technology business unit. These
changes were made in the name of economies of scale, but they also brought something
else with them – a large and bureaucratic organization. As the organization grows,
improvement programs will inevitable become larger and local solutions less flexible.
ITIL and PULS2 set a framework that may be difficult to change.

Best practice frameworks and improvement programs, as is also argued by Poppendieck
et al (2009), has a tendency to lock the organization in a particular way of thinking. This
is precarious for W&WW. With its manufacturing part being strong, W&WW should
keep in mind that lean is a constant search for improvement by those who know the
process best – developers and team leaders.

The SDP of today is definitely of a plan-driven nature, making it slow but probably
relatively safe in terms of ensuring the availability of the IT infrastructure.
Traditionally, the watering and dewatering business have not been overly competitive,
at least not in terms of IT tools. But with an increasing focus on staying ahead in the
configurator tool area, the need to stay alert in software development may also increase.
One can safely assume that IT will emerge as, if not the most important, at least one of
the most important tools in staying ahead in the water handling business. Development
will also remain difficult to outsource, as some of the applications are very knowledge
intensive, with calculation models that requires very specialized skills to properly
construct. The very nature of Scrum, with a strong focus on adapting to changing
customer requirements and iterative releases, may not be imperative to implement right
now – but who knows about tomorrow?

48

5. Results
The study aimed to reveal waste in a typical software development process of a large
manufacturing-oriented organization, and identify obstacles in applying a lean software
development framework to remove such waste.

Lean software development is in conflict with many traditional values of manufacturing
organizations. Although lean may be prevalent in other parts of the organization, this
does not necessarily include the IT function. IT still has a hard time comprehending the
benefits of concepts such as flow, waste and value. At W&WW, a large project tracking
system and long lead times indicate that waste is a valid concern. The most notable
waste is wait time for change approval meetings. A second prominent waste is the
abundance of handshake actions in granting approvals at different stages of the process.
At least a few of these handshakes seems to be approvals that always approve and, as
such, they are also very wasteful.

The first obstacle in adopting Lean software development is deep vertical expertise. A
few developers are experts in a narrow set of applications. With some systems, there’s
only one developer who knows how to maintain the product. This makes it impossible
to work as a team, which is an imperative principle of lean. A second obstacle is how
the teams are arranged organizationally. They have a functional setup over three
departments and three managers, which to some extent create a silo mentality, rendering
cooperation difficult. A third obstacle is how the teams are arranged geographically.
Split over two locations, manufacturing and headquarters, different customers,
objectives and plain unfamiliarity has reduced the will and opportunity to communicate
and coordinate. A fourth obstacle is the inherent conflict between the prescriptive
activities of ITIL, optimized for IT operational services, and the adaptability of agile
methodologies, optimized for rapid change and empirical decisions. ITIL fulfills a
sometimes uncalled for need to get all changes approved through several layers of
management.

5.1 Further Studies
As work with this thesis evolved, many interesting aspects of agile came into light. One
is the conflict between plan-driven and agile methodologies. How would agile perform
in a highly regulative business area such as defense or medical appliances? Does agile
impose a less traceable and less secure development process? Another interesting aspect
would be to survey the views of developers and managers on the benefits and
downsides of adopting Scrum and Kanban. How do they differ? How does the role of a
manager change in an agile approach?

49

References
Books

Beck, K. (2004), Extreme Programming Explained: Embrace Change (2nd Edition),
Addison-Wesley Professional

Bjørnvig, G. & Coplien, J. (2010), Lean Architecture: for Agile Software Development,
Hoboken: Wiley

Cohn, M. (2010), Succeeding with Agile: Software Development Using Scrum. Boston:
Addison-Wesley Professional

McConnell, S. (2004), Code Complete: A Practical Handbook of Software
Construction, Microsoft Press, San Francisco

McConnell, S. (1996), Rapid Development: Taming Wild Software Schedules, Microsoft
Press, San Francisco

Poppendieck, M., & Poppendieck, T. (2009), Leading Lean Software Development:
Results Are not the Point, Crawfordsville: Addison-Wesley Professional

Poppendieck, M., & Poppendieck, T. (2006), Implementing Lean Software
Development: From Concept to Cash, Addison-Wesley Professional

Poppendieck, M., & Poppendieck, T. (2003), Lean Software Development: An Agile
Toolkit, Crawfordsville: Addison-Wesley Professional

Royce, W. (1970), Managing the development of large software systems: concepts and
techniques, Proceedings of the 9th international conference on Software Engineering

Schwaber, K. (2004), Agile Project Management with Scrum, Microsoft Press, San
Francisco

Reports

Boehm, B. & Turner, R. (2004), Balancing Agility and Discipline: A Guide for the
Perplexed, Boston, MA: Addison-Wesley

Brooks, F. (1995), No Silver Bullet' Refired, Addison-Wesley

Brooks, F. (1986), No Silver Bullet — Essence and Accidents of Software Engineering,
Proceedings of the IFIP Tenth World Computing Conference: 1069–1076

Dubakov, M. & Stevens, P. (2008), Agile Tools. The Good, the Bad and the Ugly,
Target Process Inc. White Paper, New York, USA. Available online:
www.cs.odu.edu/~cs350m/Docs/agiletools.pdf

Kniberg, H. (2007), Scrum and XP from the Trenches, 4Media Inc. InfoQ.com.
Available online: http://www.infoq.com/minibooks/Scrum-xp-from-the-trenches

Kniberg, H. & Skarin, M. (2010), Kanban and Scrum: Making the most of both, 4Media
Inc. InfoQ.com. Available online: www.infoq.com/minibooks/Kanban-Scrum-minibook

50

Knight, J. et al (1997), Why Are Formal Methods Not Used More Widely?, Department
of Computer Science, University of Virginia, Charlottesville, VA 22903

Mah, M. (2008), How Agile Projects Measure Up and What This Means To You, Cutter
Consortium Vol. 9, No. 9

Ohno, T. (1988), Toyota Production System, Productivity Press

Shingo, S. (1989), A Study of the Toyota Production System, Productivity Press

Waterhouse, P. (2008), Improving IT Economics: Thinking ‘Lean’, CA White Paper,
New York, USA. Available online: www.ca.com/files/WhitePapers/improving-it-
economics-wp.pdf

Weinberg, G. (2003), Iterative and Incremental Development: A Brief History,
Published by the IEEE Computer Society. Available online:
http://www.highproductivity.org/r6047.pdf

Internet

Agile Alliance official site (2010), The Alliance: Mission and operations,
www.agilealliance.org/the-alliance/ (2010-01-03)

Ambler, S. (2007), 2007 IT Project Success Rates Survey Results,
www.ambysoft.com/surveys/success2007.html (2011-01-05)

Appelo, J. (2008), Simple vs. Complicated vs. Complex vs. Chaotic,
www.noop.nl/2008/08/simple-vs-complicated-vs-complex-vs-chaotic.html (2011-01-
09)

ITIL Official Site (2010), What is ITIL?, www.itil-
officialsite.com/AboutITIL/WhatisITIL.asp (2010-12-13)

ITT Corporation official site (2010), About, www.itt.com/about/ (2011-01-09)

ITT Fluid Technology (2010), Profile, ittfluidbusiness.com/profile.htm (2011-01-10)

Johnson, J. (2002), Standish Group: Third International Conference on Extreme
Programming (XP2002), luuduong.com/blog/archive/2009/03/04/applying-the-
quot8020-rulequot-with-the-standish-groups-software-usage.aspx (2010-01-12)

Lundgren, M. (2010), Introduktion till lättrörlig utveckling: med Lean och Scrum,
www.scribd.com/doc/27454567/Introduktion-till-lattrorlig-utveckling (2011-01-09)

Manifesto for Agile Software Development (2001), Principles behind the Agile
Manifesto, agilemanifesto.org/principles.html (2011-01-09)

Nielsen, D. (2010). How to Control Change Requests, www.pmhut.com/how-to-
control-change-requests (2010-12-13)

Reinertsen, D. (2007), A Lean Rethink, www.reinertsen.co.uk/LeanRethink.html (2011-
01-09)

Richmond Systems (2010), Glossary of terms, www.helpdesksoftware-
richmond.co.uk/glossary/glossary-I.htm (2011-01-09)

51

Schwaber, K. (2010), Ken Schwaber's Blog: Telling It Like It Is,
kenschwaber.wordpress.com (2010-12-16)

Scrum methodology (2009), Defined System Development Methodologies,
www.Scrummethodology.org/development-methodologies.html (2011-01-09)

Shore, J. (2004), Task Switching,
jamesshore.com/Articles/Business/Software%20Profitability%20Newsletter/Task%20S
witching.html (2010-12-13)

Stine, M. (2010), Waste #6: Task Switching, agile.dzone.com/articles/waste-6-task-
switching (2010-01-03)

Studbler, R (2008), ITIL and Software Development, www.gl-spin.org/2008-11.ppt
(2010-12-13)

Software Benchmarking Organization (2010), About SBO, www.sw-benchmarking.org
(2011-01-09)

Weisert, C. (2003), There's no such thing as the Waterfall Approach!,
www.idinews.com/waterfall.html (2010-12-13)

W&WW official site (2010), About, www.ittwww.com/3256264.asp (2011-01-09)

W&WW Intranet (2010a), About, group.ittwww.com (2011-01-09)

W&WW Intranet (2010b), Global sourcing, group.ittwww.com (2011-01-09)

W&WW Intranet (2010c), Collaboration space, group.ittwww.com (2011-01-09)

W&WW Intranet (2010d), PAR, group.ittwww.com (2011-01-09)

W&WW intranet (2010e), control document 03768, group.ittwww.com (2011-01-09)

W&WW Intranet (2009), PULS2 control document, group.ittwww.com (2011-01-09)

Oral Sources

Teamleader A (2010), interview, Sundbyberg, 2010-10-12

Teamleader B (2010), interview, Sundbyberg, 2010-10-15

Teamleader C and D (2010), interview, Sundbyberg, 2010-10-20

Teamleader E (2010), interview, Sundbyberg, 2010-11-24

Teamleader F (2010), interview, Emmaboda, 2010-10-26

Scrum Master (2010), interview, Emmaboda, 2010-10-26

Manager (2010), telephone interview, 2010-11-18

Developer A (2010), interview, Emmaboda, 2010-10-26

Developer B (2010), interview, Sundbyberg, 2010-11-11

Purchaser (2010), interview, Emmaboda, 2010-10-26

Appendix I

Appendix I
Project Tracking System

Appendix II

Appendix II
Emmaboda team’s RFC Tracking Spreadsheet

Appendix III

Appendix III
The Change Management Process

Appendix IV

Appendix IV
The Change Management Process with PULS2 (in Swedish)

Appendix V

Appendix V
Interview Topics (in Swedish)

Overview with Supervisor

Allmänt om IT-verksamheten

 Antal anställda
 Avdelningar
 Geografisk utbredning
 Organisationsschema

Allmänt om systemutveckling

 Vad utvecklas?
 Vem används programmen av?
 Vem äger förvaltningen av programmen?
 Hur mycket är nyutveckling kontra vidareutveckling?
 Hur sker vidareutveckling av programmen?
 Hur många utvecklar?
 Vem är kund?

Teamen

 Hur är teamen uppdelade? Varför?
 Hur är teamen placerade geografiskt?
 Hur ser arbetssättet ut för ett team i termer av antal projekt,

underhåll/vidareutveckling av existerande system…

Projekt

 Vad menar ni med ett projekt?
 Hur ser ett typiskt projekt ut?
 Arbetar ni alltid i projektbaserat arbete?
 Hur omfattande är projekt i termer av utvecklingstid?
 Vilka är involverade?
 Kundens/användarens roll i projektet?

Produktivitet och benchmarking

 Hur upplever ni att verksamheten fungerar?
 Hur mäter ni mjukvarutvecklingens prestation?
 Produktivitet?
 Jämför ni er med andra företag?

Appendix V

Leanfilosofi i företaget

 …Organisationen som helhet
 … I it-verksamheten
 Hur ser man på framtiden för lean?

Agil utveckling i företaget

 …Organisationen som helhet
 … I it-verksamheten
 Hur ser man på framtiden för agil utveckling?
 Finns Scrum i organisationen idag?

Diskussion kring relevanta personer att prata med

 Utvecklare
 Projektledare
 Ägare
 IT-chef
 Representanter från VBLSS

Teamleaders (in Swedish)

Organisation

 Vad är teamets syfte?

 Hur många utvecklare är ni och hur är rollfördelningen?

 Hur mycket av teamets verksamhet är nyutveckling kontra förvaltning/underhåll
av existerande system?

 Är all nyutveckling i projektform?

 Hur många projekt är de aktiva i?

 Vem är kunden för era projekt?

 Vilka krav ställer kunden på er?

 Hur ger kunden feedback till er på hur systemen fungerar?

Utveckling

 Vilken typ av lösningar utvecklas?

 Hur väljer ni systemarkitektur för era lösningar?

 Vilka riktlinjer finns för hur kod ska skrivas?

 Ett typiskt projekt

 Följer era utvecklingsprojekt Puls2-mallen?

 Hur påbörjas projektet?

 Omfattning, i termer av personal och tid?

 Om resurser saknas, vad gör ni?

Appendix V

 Sammansättning i termer av konsulter och anställda?

 När anses projektet var slut?

 Vad är kundens roll i utvecklingsprocessen?

 Hur är kontakten mellan er och systems faktiska användare?

 På vilket sätt arbetar ni med andra team?

 Hur stort är beroendet av andra team?

 Hur påverkas ni av geografisk spridning?

 Hur drar ni erfranheter från ett avslutat projekt?

Utvecklingsmetodik

 Vilka problem har ni sett med dagens arbetssätt?

 Hur ser ni på användning av Scrum respektive Kanban?

 Varför är ni intresserade av just dessa metoder?

 Finns det någon plan eller direktiv uppifrån för att ändra arbetssätt?

 I vilket stadium befinner ni er i införandet av sådan metodik?

 Hur ser ni på koncept som ...
o Product owner
o Standup meetings
o Tavlor

Emmaboda Developer Team

Scrum

 Varför har ni övergått till Scrum? Varför denna metod?
 Finns det någon plan och/eller direktiv uppifrån för att ändra arbetssätt?
 I vilket stadium befinner ni er i införandet av Scrum?
 Hur går ni till väga för att ändra arbetssätt?
 Berätta om er Scrum-metodik. Hur, konkret, använder ni koncept som

o Standup meetings
o Sprint planning meetings
o Sprints
o Backlog
o Sprint backlog
o Product owner
o ScrumMaster

 Hur ser ni på framtiden för Scrum i Emmaboda?

ScrumMaster

 Berätta om din roll i teamet.
 Vilken bakgrund har du?
 Hur länge har du varit ScrumMaster?
 Varför blev du ScrumMaster?

Appendix V

Customer and User

Användare

 Vilken avdelning tillhör du?
 Vad är syftet med din avdelning?
 Vilket system använder du?
 Hur länge har du arbetat med det här systemet?
 Vad gör du då du får ett problem med ditt system?
 Vad gör du då saknar eller har förslag på en ny funktion i systemet?
 Ger du annan typ av feedback från/till produktansvarig eller utvecklingsteamet?
 Upplever du att utvecklingstemat/produktansvarig är lyhörda för dina frågor?

Management

ITIL och IT-processer

 Vilka delar av ITIL är implementerade?
 hur använder ni er av dessa delar? Följer projektledare processkartorna?
 Hur påverkas IPD av ITIL i den dagliga verksamheten?
 Gå igenom Change Management-processen.

o Vilka sitter i CAB-mötena?
o Hur sätts denna grupp samman?
o Vem/vilka innehar de olika rollerna och varför?

 Hur definieras application development-processen? Hur och av vem togs
processen fram?

Emmaboda developer team - IPD

 Hur tycker du att dotnet-utvecklarnas respektive stordatorutvecklarnas arbete har
förändrats sedan Scrum infördes?

o Vad fungerar bättre nu?
o Har något blivit sämre?

 Hur motiverade ni er övergång till Scrum?
 Har ni diskuterat hur ni kan utveckla metodiken ytterligare?

Samarbete

 Hur du på samarbetet mellan IPD, integratörer, webb och DBAs? Vad fungerar
bra och vad fungerar mindre bra?

 Hur ser du på tvärfunktionella teams?
 Hur ser du på framtida samarbeten mellan IND och IPD?

Ledningsgrupp

 Hur ofta har ni ledningsgruppsmöten och vilka medverkar?
 Vilken typ av diskussioner har du med andra avdelningsansvariga?

Appendix V

 Hur koordinerar ni IN, IP och architecture IEs verksamheter?
 Hur mäter ni eller uppskattar verksamhetens effektivitet?
 Målen för 2010 innehöll en övergång till agila utvecklingsmetoder, utryckligen

”Scrum eller Kanban”.
o Vad förväntar ni er av en sådan övergång?
o Vilka är anledningar till övergå till agil utveckling?

Topics for Discussion with Teamleaders

Hur arbetar man Emmaboda

 De positiva/negativa erfarenheter som upplevts i Scrum jämförelse med tidigare
arbetssätt

 Hur de löser det hela rent praktiskt, i termer av
o Möten/planering/stand up meetings
o Tavla
o RFCs och prioriteringar i backloggen
o Interationer/sprintar
o Avstämningar och uppföljningar med kund
o Flera utvecklingsplattformar och spridda kompetenser hos utvecklarna
o Kodstandarder/konventioner
o Synkronisering av sina sprintar mot IEI:s Kanban

 Hur de ser på framtiden, i termer av att utveckla sin Scrum-metod ytterligare

Jämförelse med IEI och IND

 Vilka fördelar har deras metod?
 Vilka styrkor och svagheter finns?
 Hur står den sig kontra Kanban?
 Vad kan man göra idag och vad kräver längre tid?
 Hur IPD ser på samarbetet med er.

o Vad fungerar och vad fungerar inte.
o Hur kan det utvecklas?

	exjobbsframsida
	abstract
	thesis.pdf

